
2015-ENST-0055

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Andrei COSTIN
le 23 Septembre 2015

Analyse à large échelle de la sécurité du logiciel

dans les systèmes embarqués

Directeur de thèse : Aurélien FRANCILLON
Co-encadrement de la thèse : Davide BALZAROTTI

Jury
M. Srd̄an ČAPKUN, Professeur, ETH, Zürich, Suisse Rapporteur
M. Claude CASTELLUCCIA, Senior Research Scientist, INRIA, Grenoble, France Rapporteur
M. Renaud PACALET, Directeur d’Études, Télécom ParisTech, Sophia-Antipolis, France Examinateur
Mme. Nathalie MESSINA, SW Architect, Magneti Marelli, Sophia-Antipolis, France Examinateur

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

Large Scale Security Analysis
of Embedded Devices’

Firmware

Thesis

Andrei Costin
andrei.costin@eurecom.fr

École Doctorale Informatique, Télécommunication et Électronique, Paris
ED 130

Publicly defended on: September 23rd, 2015

Advisor:
Assistant Prof. Aurélien Francillon
EURECOM, Sophia-Antipolis

Reviewers:
Prof. Srđan Čapkun,
ETH, Zurich

Dr. Claude Castelluccia,
INRIA, Grenoble

Co-Advisor:
Assistant Prof. Davide Balzarotti
EURECOM, Sophia-Antipolis

Examiners:
Dr. Renaud Pacalet,
Télécom ParisTech, Sophia-Antipolis

Dr. Nathalie Messina,
Magneti Marelli, Villeneuve-Loubet

This thesis is dedicated to my wife and my parents.
For their love, support and encouragement.

Acknowledgements

I want to start by thanking my supervisors, Aurélien and Davide. They were a
true inspiration and strong motivators throughout the uneasy road towards a
PhD thesis and title. They were always there when I was looking for an advise,
and they knew how to help when apparently there was nothing more to be done.
I was very fortunate and blessed that I chose them and, more importantly, that
they chose me for this PhD. Thank you for your trust and support, and for
being there (remotely, or close-by with pizza and beer) during the hectic paper
submissions just seconds before late AM hours of CFP deadlines.

I also thank Aurélien and Davide for their help organizing my thesis defense com-
mittee (spoiler alert: much more challenging than it sounds!), whose members
I thank for their time and effort allotted for reviewing my work and for their
constructive questions and feedback during the entire process.

My regards also go to the S3 SysSec group and its former, present and future
members. In particular, my best go to: Jonas, Mariano, Davide C., Leyla, Merve
and Onur, Luca, Sandeep, and Jelena. The S3 SysSec group would not be what
it is without its collaborating groups and visiting friends: many thanks go to
Apostolis for the nice and fruitful collaborations we’ve been developing since
his visit at S3 SysSec; and to Lucian for the after-work hours spent with the
Romanians’ group over good beers during his S3 SysSec experience exchange.

A special thanks goes to our very close friends: Igor, Misca and Nastea, Slava and
the Moiseev family, the Burlacu family, the Ciur-Panfilov family, the Bogulean
family. My best also go to the friends of the STAN group, and some more shout-
outs go to our Romanian friends in the Sophia-Antipolis area. Their support,
warm welcoming to their homes and fun discussions about the past memories,
the present joys and the future made my PhD time much more fun and enjoyable,
and also helped me move my PhD research forward.

Moving closer to the thesis’ submission and defense brings a lot of pressure, stress
and uncertainty. What I have learned is that sometimes having the opportunity
to disconnect from everything can be the key. In this regard, I was fortunate
to have been part of (read: to have escaped to) very nice two summer schools
(yes, exactly like in the high-school!) which helped me disconnect, relax, and
focus in silence on the thesis and on important things in life. First, my thanks
go to UCLA’s IPAM (and their awesome staff) and to Aurélien for giving me the
opportunity to spend three great weeks in Los Angeles as part of the GSS2015
program. Second, my thanks go to COINS Research School of Computer and
Information Security (and their helpful staff), and in particular to Hanno Lang-
weg. It was that kind of “last-minute call” experience when by a total surprise

vii

you get invited to give a lecture, with the added bonus of enjoying an amazing
summer week in Metochi on the beautiful Greek island of Lesbos. I found the
Metochi monastery extension a very special place and being there was a great
opportunity for me to meditate during the silent and pleasantly warm evenings,
to find my inner balance, and to calmly move the thesis to its logical and timely
conclusion. My regards go to the new friends I’ve met during these two summer
schools and with whom we’ve spent great summer time both in Los Angeles and
Lesbos!

Thank you all!

Last, but not least, no matter how hard I try, it will never be enough to say thank
you to my wife and to my family. Their love, trust and support is at the core
of this thesis and the cornerstone of my PhD title. If the PhD experience was
challenging for me to say the least, I am more than confident it was not quite
easy for them either. I made them endure a lot, you name it: sleepless nights,
endless deadlines, numerous dry-runs, countless “just one more experiment and I
call you back” moments, disappearing for “just (yet) another conference” travel,
requests for reviewing and proof-reading my papers, mood swings, burnouts,
and the list can go forever. And they never turned their back on me. Instead,
they kept walking right along with me and gave me the best of their advise and
support. Their endless patience and love was and is key to my success

– THANK YOU AND I LOVE YOU!

Large Scale Security Analysis of Embedded Devices’ Firmware

Abstract

Embedded systems are omnipresent in our everyday life and are becoming in-
creasingly present in many computing and networked environments. For example,
they are at the core of various Common-Off-The-Shelf (COTS) devices such as
printers, video surveillance systems, home routers and virtually anything we in-
formally call electronics. The emerging phenomenon of the Internet-of-Things
(IoT) will make them even more widespread and interconnected. Cisco famously
predicted that there will be 50 billion connected embedded devices by 2020.
Given those estimations, the heterogeneity of technology and application fields,
and the current threat landscape, the security of all those devices becomes of
paramount importance. In addition to this, manual security analysis does not
scale. Therefore, novel, scalable and automated approaches are needed.

In this thesis, we present several methods that make feasible the large scale
security analysis of embedded devices. We implemented those techniques in a
scalable framework that we tested on real world data. First, we collected a large
number of firmware images from Internet repositories. Then we unpacked a large
subset of them and performed simple static analysis. This resulted in the discov-
ery of many new vulnerabilities. Also, this allowed us to identify five important
challenges.

Embedded devices often expose web interfaces for remote administration. There-
fore, we developed techniques for large scale static and dynamic analysis of such
interfaces. This allowed us to find a large number of new vulnerabilities and to
identify the limitations of emulation and web security tools.

Finally, identifying and classifying the firmware files is difficult, especially at
large scale. For these reasons, we proposed Machine Learning (ML) techniques
and features for firmware files classification. Also, we developed multi-metric
score fusion approaches to fingerprint and identify embedded devices at the web
interface level.

Using these techniques, we were able to discover a large number of new vulner-
abilities in dozens of firmware packages, affecting a great variety of vendors and
device classes. We were also able to achieve high accuracy in fingerprinting and
classification of both firmware images and live embedded devices.

viii

Résumé en français

Les systèmes embarqués (embedded systems) sont omniprésents dans notre vie
quotidienne et sont de plus en de plus présents dans nombreux environnements
informatiques en réseau. Par exemple, ils sont à la base de divers dispositifs
Common-Off-The-Shelf (COTS) tels que les imprimantes, les routeurs et pra-
tiquement tout ce que nous appelons communément les appareils électroniques.
Le phénomène émergent de l’Internet des objets (Internet-of-Things (IoT)) va
rendre ces systèmes encore plus communs et interconnectés. Cisco prévoit qu’il
ait 50 milliards de systèmes embarqués connectés en 2020. Compte tenu de ces
estimations, de l’hétérogénéité des domaines technologiques et d’application, et
des menaces potentielles, la sécurité de tous ces dispositifs est d’une impor-
tance primordiale. De plus, une analyse manuelle de leur sécurité ne passe pas
à l’échelle. Donc, de nouvelles approches automatisées et qui passent à l’échelle
sont donc nécessaires.

Dans cette thèse, nous présentons plusieurs méthodes qui rendent possible l’analyse
de la sécurité des dispositifs embarqués à grande échelle. Nous avons implémenté
ces techniques dans un système évolutif que nous avons testé sur les données de
systèmes réels. Tout d’abord, nous avons recueilli un grand nombre d’images logi-
cielles (firmware) sur Internet. Ensuite, nous avons dépaqueté un grand nombre
d’entre eux et nous avons réalisé une analyse statique simple. Cela a permis de
découvrir beaucoup de nouvelles vulnérabilités ainsi que d’identifier cinq défis de
recherche importants. Souvent, les appareils embarqués exposent des interfaces
Web pour l’administration à distance. Par conséquent, nous avons développé
des techniques pour l’analyse statique et dynamique de ces interfaces à grande
échelle. Cela nous a permis de trouver un grand nombre de nouvelles vulnérabil-
ités et d’identifier les limites de l’émulation et les limites des outils d’analyse de la
sécurité Web. Enfin, il est difficile d’identifier et de classer les firmwares, surtout à
grande échelle. Pour ces raisons, nous avons proposé des techniques de Machine
Learning et les caractéristiques discriminantes pour classer les firmwares. Aussi,
nous avons développé des approches d’empreintes numériques et d’identifier dis-
positifs embarqués au à partir de leur interface Web.

Grâce à ces techniques, nous avons découvert un grand nombre de nouvelles
vulnérabilités dans de nombreux firmwares, affectant une grande variété de les
fournisseurs et les classes de périphériques. Nous avons également été en mesure
d’atteindre une grande précision dans les empreintes numériques et la classifica-
tion des firmwares et les dispositifs embarqués.

ix

Rezumat în română

Dispozitivele încorporate sunt omniprezente în viat,a noastră de zi cu zi s, i devin
din ce în din ce în ce prezente în multe medii de calcul s, i de ret,ea. De exem-
plu, ele sunt la baza diverselor dispozitive de uz comun (Common-Off-The-Shelf
(COTS)), cum ar fi imprimantele, sistemelele de supraveghere video, routerele
s, i practic orice noi numim convenţional electronice. Fenomenul emergent “In-
ternetul Obiectelor” (Internet-of-Things (IoT)) le va face chiar mai răspândite
s, i interconectate. Cisco estimează că până în anul 2020 vor fi 50 de miliarde de
dispozitive integrate conectate. Având în vedere aceste estimări, eterogenitatea
domeniilor tehnologice s, i de aplicare, s, i peisajul actual al amenint,ărilor de secu-
ritate s, i de atacuri, securitatea tuturor acelor dispozitive devine de o important,ă
majoră. În afară de aceasta, este cunoscut faptul că analiza manuală de securi-
tate nu este scalabilă. Prin urmare, sunt necesare abordări care sunt noi, scalabile
s, i automatizate.

În această teză, vom prezenta mai multe metode care fac posibilă analiza de secu-
ritate la scară largă a dispozitivelor încorporate. Am implementat aceste tehnici
într-un sistem automatizat s, i scalabil pe care le-am testat apoi pe date reale. Mai
întâi, am colectat un număr mare de fis, iere de firmware de pe Internet. Apoi am
despachetat un subset mare din acele fis, iere de firmware si am realizat o analiză
statică simplă. Acest lucru a dus la descoperirea a numeroase vulnerabilităt, i noi.
De asemenea, acest lucru ne-a permis identificarea a cinci probleme principale s, i
fundamentale asociate cu astfel de cercetări.

Dispozitive integrate expun adesea interfet,e web pentru administrarea de la
distant,ă. Prin urmare, am dezvoltat tehnici de analiză statică s, i dinamică la
scară largă a unor astfel de interfet,e. Acest lucru ne-a permis să găsim un număr
mare de noi vulnerabilităt, i s, i a identificăm limitările instrumentelor de emulare
s, i de securitate web.

În cele din urmă, identificarea s, i clasificarea fis, ierelor firmware este dificilă, mai
ales la scară largă. Din aceste motive, am propus tehnici de Machine Learn-
ing (ML) s, i caracteristici de clasificare pentru fis, ierele firmware. De asemenea,
am dezvoltat abordări de fuziune a scorurilor multi-metrice pentru amprentarea
digitală s, i identificarea dispozitivelor încorporate la nivelul interfet,ei web.

Folosind aceste tehnici, am reus, it să descoperim un număr mare de noi vulnerabilităt, i
în zeci de fis, iere firmware, care afectează o mare varietate de furnizori s, i clase
de dispozitive. De asemenea, am reus, it să atingem o acuratet,e ridicată în am-
prentarea s, i clasificarea fis, ierelor firmware s, i a dispozitivelor integrate on-line.

x

Аннотация на русском

Встроенные системы (embedded systems) являются вездесущими в нашей
повседневной жизни и становятся все более распространенными во многих
вычислительных и сетевых средах. Например, они находятся в основе различных
стандартных устройств (Common-Off-The-Shelf (COTS)), таких как принтеры,
системы видеонаблюдения, маршрутизаторы и практически все, что мы
неофициально называем электроникой. Новая технология "Интернет Вещей"
(Internet-of-Things (IoT)) даст им еще большее распространение и сделает
их более взаимосвязаными. Cisco как известно предсказал, что к 2020 году
во всем мире будет насчитываться около 50 миллиардов встраиваемых
устройств, которые будут подключены к Интернету. Учитывая эти оценки,
неоднородность технологий и приложений, и текущий пейзаж угроз и атак,
безопасность этих устройств станет первостепенной важности. Также известно
что ручной анализ не масштабируется. Соответственно, существует потребность
в новых, масштабируемых и автоматизированных подходах.

В данной диссертации, мы представляем несколько методов, которые делают
возможным крупномасштабный анализ безопасности встраиваемых устройств.
Мы реализовали полностью автоматизированную систему, внедрили в неё
данные методы методы и проверили нашу систему на реальных данных.
Во-первых, мы собрали большое количество файлов прошивки (firmware)
из хранилищ Интернета. Затем мы распаковали большое количество из
них и провели простой статический анализ. Это привело к обнаружению
многих новых уязвимостей. Кроме того, это позволило нам определить пять
важных проблем, которые являются специфическими для таких исследований.
Встроенные устройства часто отркывают веб-интерфейсы для удаленного
администрирования. Таким образом, мы разработали методы для крупномасштабного
статического и динамического анализа таких интерфейсов. Это позволило
нам найти большое количество новых уязвимостей, и определить ограничения
эмуляции и инструментов тестирования веб-безопасности. Наконец, идентификация
и классификация прошивок является сложной задачей, особенно в крупномасштабных
установках. По этим причинам, мы предложили методы машинного обучения
(ML), а также характеристики для классификации прошивок. Кроме того,
мы разработали подходы для слияния много-метрических показателей для
сбора цифровых “отпечатков” и идентификации встроенных устройств.

Используя эти методы, мы смогли обнаружить большое количество новых
уязвимостей во многих прошивках. Эти уязвимости затрагивают большое
разнообразие поставщиков устройств и классов встраиваемых устройств.
Мы также смогли добиться высокой точности в сборе отпечатков и классификации
прошивок и подключенных встроенных устройств.

xi

Contents

Abstract viii

List of Publications xix

1 Introduction 1

1.1 Contributions of the Thesis . 3

1.2 Organization . 4

2 State of The Art 7

2.1 Real-World Studies . 7

2.1.1 Large Scale Studies of Embedded Devices and Firmware
Images (In-the-Wild Approach) 7

2.1.2 Small Scale Studies of Supervised Embedded Devices (In-
the-Lab Approach) . 8

2.2 Firmware Analysis . 9

2.2.1 Firmware Unpacking, (Re)Packing and Malicious Modifi-
cations . 9

2.2.2 Malware for Embedded Devices and Firmware Images . . 11

2.2.3 Static and Dynamic Firmware Analysis 12

2.2.4 Firmware Emulation . 13

2.3 Web-related Aspects . 13

2.3.1 Web Application Security 13

2.3.2 Web Application Fingerprinting and Identification 15

2.4 Fingerprinting and Classification 15

2.4.1 Embedded Device Fingerprinting and Identification . . . 16

2.4.2 File Classification . 16

2.5 Summary . 17

xiii

xiv CONTENTS

3 Motivating Example – Insecurity of Wireless Embedded Pyrotech-
nic Systems 19

3.1 Introduction . 19

3.2 Fireworks Systems Architecture 20

3.2.1 Regulation, Compliance and Certification 22

3.3 Experiments and Results . 23

3.3.1 Summary . 23

3.3.2 Firmware Acquisition and Static Analysis 24

3.3.3 Hardware Acquisition and Analysis 24

3.3.4 Wireless Analysis . 25

3.3.5 Solutions . 29

3.4 Future Work . 30

3.5 Summary . 31

4 A Large Scale Analysis of the Security of Embedded Firmware
Images 33

4.1 Introduction . 33

4.1.1 Methodology . 34

4.1.2 Results Overview . 35

4.1.3 Contributions . 36

4.2 Challenges . 36

4.3 Experimental Setup . 40

4.3.1 Architecture . 41

4.3.2 Firmware Acquisition and Storage 41

4.3.3 Unpacking and Analysis 43

4.3.4 Correlation Engine . 45

4.3.5 Data Enrichment . 47

4.3.6 Setup Development Effort 48

4.4 Dataset and Results . 48

4.4.1 General Dataset Statistics 48

4.4.2 Results Overview . 49

4.5 Case Studies . 52

Ph.D. Thesis — Andrei Costin

CONTENTS xv

4.5.1 Backdoors in Plain Sight 52

4.5.2 Private SSL Keys . 53

4.5.3 XSS in WiFi Enabled SD Cards? 53

4.6 Future Work . 55

4.7 Summary . 56

5 Dynamic Firmware Analysis at Scale: A Case Study on Embedded
Web Interfaces 57

5.1 Introduction . 57

5.1.1 Overview of our Approach 59

5.1.2 Contributions . 60

5.2 Exploring Techniques to Analyze Web Interfaces of Firmware Images 60

5.2.1 Static Analysis . 60

5.2.2 Dynamic Analysis . 61

5.2.3 Limitations of Analysis Tools 62

5.2.4 Running Web Interfaces 63

5.3 Analysis Framework Details . 66

5.3.1 Firmware Selection . 66

5.3.2 Filesystem Preparation 67

5.3.3 Analysis Phase . 69

5.3.4 Results Collection and Analysis 69

5.3.5 Results Exploitation . 71

5.4 Dataset . 71

5.5 Results and Case Studies . 72

5.5.1 Overview of Discovered Vulnerabilities 72

5.5.2 Static Analysis Vulnerabilities 73

5.5.3 Dynamic Analysis Vulnerabilities 73

5.5.4 Presence of HTTPS . 74

5.5.5 Other Network Services 75

5.6 Discussion . 76

5.6.1 Emulation Technique’s Limitations 76

5.7 Future Work . 78

5.8 Summary . 78

Large Scale Security Analysis of Embedded Devices’ Firmware

xvi CONTENTS

6 Scalable Firmware Classification and Identification of Embedded
Devices 79

6.1 Introduction . 79

6.1.1 Open Problems . 79

6.1.2 Overview of our Approach 80

6.1.3 Contributions . 80

6.2 Firmware Classification and
Identification . 80

6.2.1 Dataset . 81

6.2.2 Features for Machine Learning 81

6.2.3 Experimental Setup . 84

6.2.4 Evaluation . 85

6.2.5 Discussion . 88

6.3 Device Fingerprinting and Identification 89

6.3.1 Dataset . 90

6.3.2 Metrics for Fingerprinting 91

6.3.3 Scoring Systems for Metrics 93

6.3.4 Experimental Setup . 94

6.3.5 Evaluation . 95

6.3.6 Discussion . 95

6.4 Usage Scenarios . 96

6.4.1 Device Fingerprinting and Identification 96

6.4.2 Firmware Classification 98

6.4.3 Towards Fully Automated System –
“Crawl. Learn. Classify. Identify. Pwn.” 98

6.5 Summary . 98

7 Conclusions 101

7.1 Future Work . 102

Ph.D. Thesis — Andrei Costin

CONTENTS xvii

A Résumé de la thèse en français 105

A.1 Introduction . 105

A.1.1 Contributions de la Thèse 107

A.1.2 Organisation de la Thèse 109

A.2 Exemple Motivant – Insécurité des Systèmes Pyrotechniques Sans
Fil . 110

A.2.1 Introduction . 110

A.2.2 Sommaire . 111

A.3 Analyse à Grande Échelle de la Sécurité des Firmwares pour Dis-
positifs Embarqués . 112

A.3.1 Introduction . 112

A.3.2 Sommaire . 114

A.4 Analyse Dynamique de Firmware à Grande Échelle: Une Étude
de Cas sur les Interfaces Web de Dispositifs Embarqués 115

A.4.1 Introduction . 115

A.4.2 Sommaire . 116

A.5 Classification des Firmware et l’Identification des Appareils Em-
barqués Dans une Manière Scalable 117

A.5.1 Introduction . 117

A.5.2 Sommaire . 118

A.6 Conclusions . 119

A.6.1 Les Travaux Ultérieurs 121

Ethical Aspects 123

List of Figures 126

List of Tables 128

Bibliography 129

Large Scale Security Analysis of Embedded Devices’ Firmware

List of Publications
(2012—2015)

This dissertation is based on several papers that I have contributed to during my
PhD.

The motivating example in Chapter 3 is based on the ACM WiSec 2014 “SHORT
PAPER: A Dangerous ’Pyrotechnic Composition’: Fireworks, Embedded Wireless
and Insecurity-by-Design” paper.

The large scale security analysis of firmware images in Chapter 4 is based on
the USENIX Security 2014 “A Large Scale Analysis of the Security of Embedded
Firmwares” paper.

The Chapter 5, and Chapter 6 respectively, are based on the “Dynamic Firmware
Analysis at Scale: A Case Study on Embedded Web Interfaces” paper, and the
“Scalable Firmware Classification and Identification of Embedded Devices” paper
respectively. At the time of the thesis submission, both of these papers are under
submission at ISOC NDSS’16.

Following is a complete list of papers that I have contributed to during my PhD
studies. The papers marked with † are not included in this thesis (listed for
completeness).

Conference and Journal Publications, Short Papers

1. A. Costin, A. Zarras, A. Francillon, “Dynamic Firmware Analysis at Scale:
A Case Study on Embedded Web Interfaces”, submitted at Annual Sym-
posium on Network and Distributed System Security (NDSS’16), August
2015 [80].

2. A. Costin, A. Zarras, A. Francillon, “Scalable Firmware Classification and
Identification of Embedded Devices” , submitted at Annual Symposium on
Network and Distributed System Security (NDSS’16), August 2015.

xix

xx CONTENTS

3. A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, “A Large Scale Ana-
lysis of the Security of Embedded Firmwares” , Proceedings of the 23rd
USENIX Security Symposium (USENIX Security), San Diego USA, Au-
gust 2014 [79].

4. A. Costin, A. Francillon, “SHORT PAPER: A Dangerous ’Pyrotechnic
Composition’: Fireworks, Embedded Wireless and Insecurity-by-Design”,
Proceedings of the ACM Conference on Security and Privacy in Wireless
and Mobile Networks (ACM WiSec), Oxford UK, July 2014 [77].

5. † A. Costin, A. Francillon, “Ghost in the Air (Traffic): On insecurity of
ADS-B protocol and practical attacks on ADS-B devices” , BlackHat, Las
Vegas USA, August 2012 [76].

6. † A. Costin, “All your cluster-grids are belong to us: Monitoring the
(in)security of infrastructure monitoring systems” , Proceedings of the 1st
IEEE Workshop on Security and Privacy in the Cloud (SPC) (co-located
with IEEE Conference on Communications and Network Security (CNS)),
Florence Italy, September 2015 [75].

7. † A. Costin, J. Isachenkova, M. Balduzzi, A. Francillon, D. Balzarotti,
“The Role of Phone Numbers in Understanding Cyber-Crime Schemes”,
Proceedings of the Annual Conference on Privacy, Security, and Trust
(PST), Tarragona Spain, July 2013 [78].

8. † J. Isacenkova, O. Thonnard, A. Costin, D. Balzarotti, A. Francillon,
“Inside the SCAM Jungle: A Closer Look at 419 Scam Email Operations” ,
Proceedings of the International Workshop on Cyber Crime (co-located
with IEEE Symposium on Security and Privacy (SP)), San Francisco USA,
2013 [137].

9. † J. Isacenkova, O. Thonnard, A. Costin, D. Balzarotti, A. Francillon,
“Inside the SCAM Jungle: A Closer Look at 419 Scam Email Operations” ,
EURASIP Journal on Information Security, 2014.

Ph.D. Thesis — Andrei Costin

CONTENTS xxi

Invited Talks, Paper and Poster Presentations

1. A. Costin, “A Large-Scale Analysis of the Security of Embedded Firmwares”,
short paper presentation at SSTIC, Rennes France, June 2015.

2. A. Costin, J. Zaddach, “Analysis of Security of Embedded Devices”, in-
vited talk at SECURE.PL, Warsaw Poland, October 2014.

3. J. Zaddach, A. Costin, “Embedded Devices Security and Firmware Reverse
Engineering” , tutorial/workshop at Black Hat, Las Vegas USA, August
2013 [204].

4. A. Costin, J.Zaddach, “POSTER: Firmware.RE: Firmware Unpacking and
Analysis as a Service”, poster presentation at the ACM Conference on Se-
curity and Privacy in Wireless and Mobile Networks (ACM WiSec), Oxford
UK, July 2014.

5. A. Costin, “A Dangerous ’Pyrotechnic Composition’: Fireworks, Embed-
ded Wireless and Insecurity-by-Design” , invited talk at HITB, Kuala-Lumpur
Malaysia, October 2014.

6. A. Costin, “A Dangerous ’Pyrotechnic Composition’: Fireworks, Embed-
ded Wireless and Insecurity-by-Design” , invited talk at DefCamp, Bucharest
Romania, November 2014.

7. A. Costin, A. Francillon, “Ghost in the Air (Traffic): On insecurity of ADS-
B protocol and practical attacks on ADS-B devices”, invited talk at INSA,
Lyon France, March 2013.

8. A. Costin, A. Francillon, “Ghost in the Air (Traffic): On insecurity of ADS-
B protocol and practical attacks on ADS-B devices” , invited talk at Black
Hat, Las Vegas USA, August 2012.

9. A. Costin, “Security of Network Monitoring Systems (NMS) for Cloud and
HPC. Hands-on assessment, analysis and countermeasures.” , invited lec-
ture at “COINS Summer School 2015 on Cloud Security”, Lesbos, Greece,
August 2015.

Large Scale Security Analysis of Embedded Devices’ Firmware

Chapter 1

Introduction

Embedded systems are omnipresent in our everyday life and they are becoming
increasingly present in many computing and networked environments. In fact,
multiple reports estimate an increase in the number of embedded devices in the
next few years [133, 170]. Cisco famously predicted that there will be 50 billion
of connected embedded devices by 2020 [72]. Those devices will be produced by
many different manufacturers and will be present in many different models. Each
will probably have several firmware versions, leading to an overall huge number of
firmware releases. As we show in Chapter 4, hundred of thousands of firmware
images are already available, which is just a lower bound estimate of publicly
observable firmware packages. The number of firmware files will likely only grow
with the number of new embedded devices being developed and deployed.

At the same time, the security of an average embedded device’s firmware is
empirically shown to be often weak [115, 198]. This has been frequently shown
by independent evaluations [58,129,132,162]. Such evaluations often show that
the security of many embedded devices and their firmware is very low. That
once again proves that many vendors are usually more interested in fastest and
cheapest release of new products and features to increase their market share. This
practice is usually opposite to building secure products and accurately testing
them against current and future security threats. These facts are even more
worrying because the security flaws in the embedded devices and their firmware
are many times found by security practitioners using approaches that are neither
systematic nor automated [36,121].

Moreover, vulnerabilities in the firmware constitute an easy entry point for mali-
cious software and make the embedded devices prone to simple yet devastating
attacks. In fact, since 2009, multiple botnets have been discovered that exploited
various firmware vulnerabilities. Such botnets have compromised thousands, if
not millions, of online embedded devices [49,65–67,99,174,195,196]. Even worse,
the affected embedded devices are hard to diagnose and clean (e.g., no embedded
anti-virus solutions, no conventional input/output). Therefore, they often remain

1

2 1. INTRODUCTION

exploited for long periods of time. For example, the Carna botnet [65] which
was used to produce the (in)famous “Internet Census 2012” was operational for
more than one year. In addition to this, the rate of embedded devices expected to
connect to the Internet is exponential and the speed at which attacks can spread
across systems and networks is unimaginable. For example, the Slammer worm
infected more than 90% of the vulnerable machines within 10 minutes [158]. As
a consequence, manual intervention or analysis is hard, if not impossible. This
confirms the need for detecting vulnerabilities in firmware images before they are
exploited by attackers. Manual firmware analysis can find such problems [121],
however it can be a lot more efficient to automate the process. In this context,
it is desirable that the security analysis of firmware packages be automated and
fast, and be performed continuously and on a large scale.

The situation is expected to become even more troubling for multiple reasons,
which can be explained using a recent analysis of the expected IoT evolution [86].
First, by 2017 the number of connected IoT devices alone is expected to surpass
the PC, tablet and phone markets combined, with a global IoT device installed
base of around 7.5 billion devices. Second, the IoT devices are predicted to
be more or less equally distributed (i.e., by device count) between enterprise,
government (e.g., critical infrastructure) and home sectors [86]. This means
that all the major sectors are expected to be exposed to security threats arising
from vulnerable embedded devices. It is interesting to note that the predicted
scenario is somewhat similar to the surge in the mobile attacks and malware
in late 2011 [154]. This happened approximately when the number of mobile
devices in use (i.e., smartphones, tablets) surpassed the number of PCs [86]. It
is very likely that by 2017 the IoT and embedded devices will face similar attacks
and security scrutiny the way mobile technologies did back in 2011. However,
this can probably happen at a much larger scale and having a high impact.

It is known that present techniques are not completely adequate to effectively
and efficiently discover firmware vulnerabilities in a scalable manner. Some tech-
niques, such as Avatar [203], often require physical access to devices and labo-
rious manual setup for each device. Other techniques, such as Firmalice [184],
require a security policy to be provided for each device. Therefore, by using
present methods, manual work is almost always necessary and large-scale studies
are infeasible.

Additionally, in order to achieve complete automation and a continuous improve-
ment of the analysis process, two more stages must preferably be automated.
Firstly, as more firmware packages are released and hence collected, the ability
to accurately classify them or tell firmware from non-firmware apart becomes im-
portant. For example, this can be useful to automatically cluster firmware images
for the same device or vendor, and then analyse them using methods specific to
the device or the vendor. Unfortunately, the current efforts to detect and clas-
sify files (e.g., malware) [43, 145, 180], or to use machine learning [182, 191],
are limited to specific areas and do not cover specifics of embedded devices and

Ph.D. Thesis — Andrei Costin

1.1. CONTRIBUTIONS OF THE THESIS 3

their firmware. Secondly, as more embedded devices are getting web-enabled and
connected to the Internet, the ability to fingerprint and accurately identify them
becomes important. For example, this can be useful to quickly identify and isolate
populations of embedded devices affected by a particular vulnerability. However,
current techniques cannot be easily applied [60, 90, 113] to embedded devices
that are web-enabled or connected to the Internet. Therefore, even though au-
tomating these two stages is not explicitly related to pure security analysis and
vulnerability discovery, they are desirable in a large scale automated setup.

All the above considerations are the basis of the increasing need for large scale
automated techniques to achieve two main goals. One is to perform effective
firmware security analysis. Another is to accurately classify connected embedded
devices and collected firmware files.

1.1 Contributions of the Thesis

This dissertation describes scalable techniques to discover vulnerabilities in em-
bedded firmware and to classify firmware packages and live embedded devices.
The methodology we propose is based on automated and flexible mechanisms.
The initial step is to greedily and continuously collect a large number of heteroge-
neous firmware packages. Then we developed techniques for efficiently unpacking
the firmware and statically analyze the unpacked files. We then try to emulate
each firmware and its services (including the embedded web interfaces) in a “best
effort” and generic way. Subsequently, we applied dynamic analysis (e.g., web ap-
plication security tools) on each emulated instance of the firmware. An additional
step is the correlation of common vulnerabilities among the population of firm-
ware packages. Finally, we applied Machine Learning (ML) to classify firmware
files and web application fingerprinting to classify live devices. The end-to-end
methodology is depicted in the Figure 6.6.

Like other vulnerability discovery and classification methodologies, our technique
does not guarantee to provide a full coverage of the vulnerability discovery.
Nor does it guarantee a completely accurate classification of firmware files and
embedded devices. Nevertheless, it is the first demonstration of the feasibility of
large scale vulnerability discovery in firmware packages. Therefore we claim it is
an effective way to help increase the security of embedded devices, and hence
of the IoT. Even though we mainly limit the vulnerability discovery scope to
Linux-based firmware images (for ARM, MIPS and MIPSEL architectures), the
very same techniques could be easily extended to other CPU architectures (e.g.,
PowerPC), OSes (e.g., VxWorks) and software distributions. In addition, other
analysis methods or tools could be easily integrated with our framework. For
example, symbolic execution engines or fuzzing tools could be used to perform
advanced dynamic analysis.

Large Scale Security Analysis of Embedded Devices’ Firmware

4 1. INTRODUCTION

We have developed a fully automated framework and used it to test vulnerability
discovery at large scale. Our system was able to find statically 38 new vulner-
abilities in 693 firmware packages. In addition to this, our system was able to
discover dynamically 225 high-impact vulnerabilities (e.g., command injection,
XSS) in at least 20% of emulated embedded web interfaces (i.e., 45 firmware
packages). We also used the framework to test automated firmware and de-
vice classification. Our automated system was able to correctly classify firmware
packages and identify live devices with an accuracy of 90% or more.

The contributions within this dissertation can be summarized as follows:

• We are the first to propose and perform the collection and the security
analysis of embedded firmware images at large scale.

• We formulated the first five core challenges associated with this type of
research, namely: Building a Representative Firmware Dataset; Firmware
Identification; Firmware Unpacking and Custom Formats; Scalability and
Computational Limits; Results Confirmation.

• We are also the first to demonstrate the feasibility to fully automate dy-
namic analysis of heterogeneous embedded firmware at scale. We demon-
strate this with large scale dynamic analysis of embedded web interfaces.

• Moreover, we propose the first large scale and highly accurate classifica-
tion of firmware packages and live embedded devices. For this, we apply
Machine Learning (ML), web interface level fingerprints and multi-metric
score fusion.

• We implement the proposed methods in a fully automated framework that
allowed us to quickly find in practice a large number of new vulnerabilities
in many firmware packages for a variety of device classes and vendors.

• Finally, we propose firmware collection, unpacking and analysis as a service
(http://firmware.re).

1.2 Organization

The rest of the dissertation is organized as follows:

• In Chapter 2 we survey the state of the art relevant to our work, in which
we provide a description of the existing publications, tools and experiments
presented by both academia and industry.

• In Chapter 3 we present an end-to-end case study of the (in)security ana-
lysis of wireless pyrotechnic systems. We use this case study as a motivating
example for our main work in the following chapters.

Ph.D. Thesis — Andrei Costin

http://firmware.re

1.2. ORGANIZATION 5

• In Chapter 4 we introduce our methodology and describe the large scale
analysis framework that we implemented. We also provide early insights
on results and challenges.

• In Chapter 5, based on the established framework, we focus on the analysis
of the embedded web interfaces using firmware emulation combined with
static and dynamic techniques. We show how our framework can be used
in practice to quickly find new vulnerabilities in embedded web interfaces.

• In Chapter 6 we further focus on the automated and accurate classifica-
tion of both firmware files and online embedded devices. We present our
experience with exploring possible feature sets and fingerprint metrics. We
also discuss applying Machine Learning (ML) and multi-metric score fusion
techniques for automated and accurate classification at large scale.

• Finally, Chapter 7 concludes the dissertation and presents possible further
improvements of our work.

Large Scale Security Analysis of Embedded Devices’ Firmware

Chapter 2

State of The Art

During the last few years the problem of systematically securing the embedded
devices and their firmware generated an increasing interest from both academia
and industry.

This problem is complex due to several factors. For example, different embedded
devices and firmware images have different security requirements and protections,
operating environments, hardware architectures and software support. Addition-
ally, they may have different security expectations, and might implement (or not)
the security requirements in a variety of ways.

For these reasons, we present in this chapter a survey of research directions,
methodologies and tools that have been designed to perform security analyses
of embedded devices and firmware images from an interdisciplinary perspective.

2.1 Real-World Studies

2.1.1 Large Scale Studies of Embedded Devices and Firmware
Images (In-the-Wild Approach)

Several studies have been proposed to asses the security of embedded devices
by scanning the Internet. Cui et al. [83] presented a wide-scale Internet scan
to recognize devices that are known to be shipped with default credentials, and
subsequently to confirm that the discovered devices are indeed still vulnerable
by attempting to login into them. Similarly, the (in)famous Internet Census
2012 [26] is an anonymous research project that took advantage of insecure
embedded devices to build a large scale distributed botnet [65]. The authors
(ab)used the devices in the botnet to perform an entire IPv4 scan using stack
fingerprinting based on (or similar to) NMAP [114]. Unfortunately, it is not
completely clear how ethical and legal these Internet surveys were. Heninger et

7

8 2. STATE OF THE ART

al. [124] performed the largest ever network survey of TLS/SSL and SSH servers.
Their survey showed that vulnerable or weak keys are surprisingly widespread
and that the vast majority appear to belong to headless or embedded devices.
ZMap [102] is an efficient and fast network scanner, that allows to scan the
complete Internet IPv4 address space in less than one hour. Even though the
scans are not especially targeting embedded devices, many such devices are
present in this dataset. In Chapter 4 we reuse the HTTPS/SSL certificates scans
that were performed using ZMap [101].

Some online services like Shodan [155] perform regular Internet scans and pro-
vide a global view on publicly available devices and web services. This easy-to-use
research tool allows security researchers to identify systems worldwide that are
potentially exposed or exploitable. At the same time, many existing projects
scanned the Internet, or parts of it, to discover vulnerabilities in embedded sys-
tems [26, 83, 124, 155, 159, 159]. Such wide scale scans are mainly aiming to
discover online devices affected by already known vulnerabilities. Although, in
some cases they can help discover new flaws [124], many categories of vulnera-
bilities cannot be in principle discovered by such scans.

Zheng et al. [207] performed the first large scale analysis of customized An-
droid firmware images. They used both static and dynamic analyses to evaluate
the firmware security on both the application and system levels The authors
collected 250 customized Android firmware images containing around 24K pre-
installed applications. They also investigated a real-world large scale attack on
around 348K Android devices involving a pre-installed zero-day malware known
as CEPlugnew.

2.1.2 Small Scale Studies of Supervised Embedded Devices (In-
the-Lab Approach)

Large scale and in-the-wild studies have many benefits and can provide unique
insights, as outlined above. However, one main limitation is the lack of complete
control over the embedded devices or the experimental environment. On the
contrary, small scale and in-the-lab controlled environments are much easier to
manage and observe. They allow in-depth analysis and thus are able to provide
more detailed results.

To date, several reports exist that document in-the-lab small scale studies per-
formed on live embedded devices. First, Bojinov et al. [58] conducted an assess-
ment of the security of current embedded management interfaces. The study
was conducted on real physical devices. The authors found vulnerabilities in 21
devices from 16 different brands, including network switches, cameras, photo
frames, and Lights-Out Management (LOM) modules. In a similar study, a secu-
rity lab manually analyzed ten Small-Office Home-Office (SOHO) routers [132]
and they discovered at least two vulnerabilities per device. Their research revealed

Ph.D. Thesis — Andrei Costin

2.2. FIRMWARE ANALYSIS 9

in total 55 previously undisclosed security vulnerabilities in all ten devices. The
authors experimentally demonstrated how flaws in services that are not essential
can lead to full compromise of the routers and discussed possible mitigations
for these vulnerabilities. Recently, in another study [129] ten of the most pop-
ular devices such as TVs, door locks and home alarms, were manually reviewed
for security issues. The study revealed an alarmingly high average number of
vulnerabilities per device. Vulnerabilities ranged from weak passwords and Cross-
Site Scripting (XSS) to Heartbleed [100] and Denial of Service (DoS). Finally,
Niemietz and Schwenk [162] studied the security of embedded web interfaces of
ten popular DSL home routers. Authors found that all ten are vulnerable to UI
redressing and eight suffer from XSS vulnerabilities.

Indeed, the sample size of all these studies is quite small to be representative or
statistically significant. Even so, they confirm the general perception that many
embedded devices often contain important vulnerabilities.

2.2 Firmware Analysis

2.2.1 Firmware Unpacking, (Re)Packing and Malicious Modifi-
cations

To perform a successful analysis of a firmware, it requires locating and extracting
important functional blocks (e.g., binary code, configuration files, scripts, web
interfaces) from the firmware package. This task would be easy to address for
traditional software components, where standardized formats for the distribu-
tion of machine code (e.g., PE and ELF), resources (e.g., JPEG and GZIP) and
groups of files (e.g., ZIP and TAR) exist. However, embedded software distri-
bution lacks general standards and vendors have often developed their own file
formats to describe flash and memory images. In some cases those formats are
compressed with non-standard compression algorithms. In other cases those for-
mats are obfuscated or encrypted to prevent analysis. Many firmware images are
based on file system images where the bootloader, the operating system ker-
nel and the applications are well structured and separated. These are frequently
Linux-based firmware images which are, in general, easy to unpack. However,
there are also monolithic firmware images where the bootloader, the operating
system kernel, the applications, and other resources are combined together in a
single memory image. These are especially challenging to unpack.

Therefore, unpacking firmware images is a known problem and several tools for
this purpose exist. Binwalk [117] is a firmware analysis toolbox that provides
various methods and tools for extraction, inspection and reverse engineering of
firmware images or other binary blobs. FRAK [81] is a framework to unpack,
analyze, and repack firmware images of embedded devices. FRAK was never
publicly released and reportedly supports only very few firmware formats (e.g.,

Large Scale Security Analysis of Embedded Devices’ Firmware

10 2. STATE OF THE ART

Cisco IOS and IP phones, HP LaserJet printers). The Binary Analysis Toolkit
(BAT) [123,192] was originally designed to detect GPL license violations, mainly
by comparing strings in a firmware image to strings present in open source soft-
ware distributions. For this purpose BAT has to unpack firmware images.

Looking at insecure (remote) firmware updates, researchers reported the possibil-
ity to arbitrarily inject malware into the firmware of a variety of devices. Stamm et
al. [186] demonstrated that malicious modifications of a D-Link DI-524 router’s
firmware can be used to mount powerful attacks. For example, attackers could
executed drive-by pharming attacks [186] in which they take advantage of an in-
adequately protected router to gain access to user data or to change router’s set-
tings (e.g., DNS). Such attacks could result in Denial of Service (DoS), malware
infection or other unwanted results. Authors also suggested that router-based
botnets (see Section 2.2.2) could be built using these techniques. Several other
researchers presented techniques and implications of exploiting Apple firmware
updates. Chen [70] reversed Apple keyboard firmware updates and demonstrated
how to achieve a persistent rootkit. Miller [157] reverse engineered the firmware
and its “flashing” process for a particular Apple smart battery controller. The
author showed how to reprogram the smart battery by modifying its firmware,
and argued this may be enough to cause safety issues such as producing fire
hazards. Brocker and Checkoway [63] demonstrated it is possible to disable the
“camera ON” physical LED indicator via malicious firmware modifications of
the iSight cameras. In other experiments, several network card firmware images
have been analyzed and modified to insert a backdoor [89, 97] or to extend
their functionality [54]. Basnight et al. [46] examined the vulnerability of PLCs
to intentional firmware modifications. The authors presented a general firmware
analysis methodology, and experimentally demonstrated how legitimate firmware
can be updated on an Allen-Bradley ControlLogix L61 PLC. Costin [73,74] first
demonstrated the firmware modification attacks on printers. To accomplish this
the author (ab)used flaws in multiple protocols such as HP Remote Firmware
Update (RFU), Printer Job Language (PJL) and PostScript. Delivering the at-
tack via standard printed documents, Costin was able to have full access to the
underlying VxWorks OS and demonstrated among other things the ability of out-
bound communication to a malicious server. Cui et al. [82] discussed how the
firmware update feature could be (ab)used by the attackers to inject malicious
firmware modifications into vulnerable embedded devices. Using the techniques
from [73,74], the authors presented a case study of a firmware modification vul-
nerability in the HP RFU protocol to arbitrarily inject malware into HP LaserJet
printers. Zaddach et al. [205] explored the consequences of a backdoor injection
into the firmware of a hard disk drive and its use to exfiltrate data.

Ph.D. Thesis — Andrei Costin

2.2. FIRMWARE ANALYSIS 11

2.2.2 Malware for Embedded Devices and Firmware Images

Recently, the botnets and the worms started to actively target the embedded
devices. This is not surprising given the security state of the embedded devices,
such as the COTS embedded devices, is commonly bad. Therefore, botnets and
worms exploit known or 0-day vulnerabilities in the firmware of the affected de-
vices. For example, they often exploit default and hardcoded credentials, or unau-
thenticated remote command and code execution. This worrying trend motivates
an overview of existing botnets exploiting firmware vulnerabilities in embedded
devices.

In 2009, the psyb0t botnet was discovered [49,99]. It was operating a new form
of malware which was specifically targeting MIPS Linux based ADSL routers.
It affected thousands of insecure devices and the botnet was used primarily as
a proof-of-concept as well as to launch several DDoS attacks. Embarrassingly,
the psyb0t threat could have been mitigated through a firmware update and a
change in the default authentication credentials. The Chuck Norris botnet [67]
exploited poorly-configured or outdated firmware MIPSEL Linux devices, in par-
ticular ADSL modems and routers. The botnet attacked devices that exposed the
telnet service. It gained telnet access by brute-forcing credentials and then
used this access as an infection vector to extend itself. The Linux malware op-
erated by this botnet was controlled by a central Command-and-Control (C&C)
server, while the infected devices were coordinated over IRC channels. Anders-
son and Szewczyk [40] presented a detailed overview of malware risks associated
with insecure or improperly administered ADSL routers. The authors very well
summarized many studies referring to the psyb0t and Chuck Norris botnets
operating over infected embedded devices.

The Aidra (a.k.a Hydra) botnet [66] started to emerge in 2012. It is built using
an open source IRC-based mass router that contains scanning and exploitation
modules. Its source was made publicly available for download from the Inter-
net [107]. The novelty of this botnet is that it supports six CPU architectures
(x86, ARM, MIPS/MIPSEL, PPC, SH4).

The Carna botnet [65] consisted of around 400K embedded devices “infected”
with benign software. It targeted multiple CPU architectures and device classes.
Similarly to psyb0t, it abused the default credentials in many connected em-
bedded devices to propagate itself. In one instance, the Carna botnet was used
by the anonymous researcher who created it to produce the (in)famous “Internet
Census 2012” [65] survey dataset.

TheMoon worm [174, 195, 196] emerged in 2014. It targets MIPS based devices
and currently affects Linksys (Belkin) E-series routers. It spreads by sending an
exploit to a vulnerable CGI script running on these routers. The worm exploits
an unauthenticated remote command injection flaw in an administrative script
that fails to properly check the credentials.

Large Scale Security Analysis of Embedded Devices’ Firmware

12 2. STATE OF THE ART

Bitcoin mining is the latest trend in embedded malware, exploitation and botnet
operation. In 2014, Symantec documented Linux.Darlloz, an IoT worm used to
mine crypto currencies [189]. It affected around 31K devices and targeted routers,
Set-Top Boxes (STB), IP-cameras running ARM, MIPS and PowerPC architec-
tures. Similarly, in 2014 SANS Technology Institute uncovered and published
malware samples targeting ARM-based Digital Video Recorders (DVR) [197]
and MIPS-based routers [194] for the purpose of mining digital currencies.

Finally, Minn Pa Pa et al. [167] analyzed the increasing threats against embed-
ded devices. The authors showed that starting with 2014, Telnet-based attacks
that target IoT devices have rocketed. They also proposed and setup IoTPOT,
a honeypot and sandbox to attract and analyze Telnet-based attacks against
various IoT devices. The authors observed in total four IoT malware families,
some of them supporting up to nine CPU architectures.

2.2.3 Static and Dynamic Firmware Analysis

To date there are several separate examples of security analysis of embedded
systems.

Performing such studies requires static and dynamic techniques and tools specif-
ically developed for embedded devices and their firmware images. Davidson et
al. [87] proposed FIE, a firmware analysis tool built on top of KLEE symbolic
execution engine [64]. It incorporates new symbolic execution techniques and can
be used to verify security properties of some simple firmware images often found
in practice. Zaddach et al. [203] described Avatar, a dynamic analysis platform
for firmware security testing. In Avatar, the instructions are executed in an em-
ulator, while the input and output accesses to the peripherals of the embedded
system are forwarded to the real device. This allows a security engineer to apply
a wide range of advanced dynamic analysis techniques like tracing, tainting and
symbolic execution. Shoshitaishvili et al. [184] presented Firmalice, a static
binary analysis framework to support the analysis of firmware files for embed-
ded devices. Authors developed a model to describe, in an architecture- and
implementation-independent way, authentication bypass vulnerabilities in firm-
ware binaries. They also implemented a tool that uses advanced program analysis
techniques to analyze binary code in complex firmware of diverse hardware plat-
forms. Authors verified their technique on three known backdoors in real devices.
Binary static analysis can be successfully applied to binary CGIs to find vulnera-
bilities such as buffer overflows, (remote) code executions, command injections
(e.g., Firmalice [184] or WEASEL [181]). Finally, new techniques start to appear
that are able to cope with the diversity of CPU architectures found in embed-
ded systems. For instance, Pewny et. al [169] proposed a system to derive bug
signatures for known vulnerabilities. They use an intermediate representation of
the buggy code and can support x86, ARM and MIPS architectures. The au-
thors showed their system can find the Heartbleed vulnerabilities regardless of

Ph.D. Thesis — Andrei Costin

2.3. WEB-RELATED ASPECTS 13

the underlying software instruction set. They also applied their method to find
backdoors in firmware images of routers running ARM or MIPS.

2.2.4 Firmware Emulation

There are several recent approaches that rely on emulation in order to discover
or verify vulnerabilities in embedded systems. Davidson et al. [87] present FIE,
which intended to verify security properties of some simple firmware images often
found in real-world as well as to discover vulnerabilities in such firmwares. It is
based on the KLEE symbolic execution engine and allows easier incorporation of
new symbolic execution techniques. FIE emulates the firmware under analysis
by translating it into LLVM bitcode and then emulating it.

Kammerstetter et al. [141] developed Prospect. It targets Linux-based em-
bedded systems that are emulated with a custom kernel which forwards ioctl
requests to the embedded device that runs the device’s normal kernel. Li et
al. [151] proposed FEMU, a hybrid firmware/hardware emulation framework to
achieve confident System-on-Chip (SoC) verification. The authors used a trans-
planted QEMU at BIOS level to directly emulate devices upon hardware. While
not oriented towards security aspects of SoC, on a practical SoC project it helped
authors identify several design issues in full-system emulation. Dolan-Gavitt et
al. [91] presented PANDA, a tool based on QEMU emulator that was built to
support whole system emulation and reverse engineering. Koscher et al. [149]
presented Surrogates, a system that can emulate and instrument embedded
systems in near-real-time. It also enables a variety of dynamic analysis techniques.
Surrogates framework provides the emulator with an accurate representation of
the environment where the firmware is being executed. Finally, Avatar also pro-
vides firmware emulation for security analysis. It executes embedded code inside
a QEMU emulator, while the input and output requests to the peripherals of the
embedded system are forwarded to the real device attached to the framework.

2.3 Web-related Aspects

Many embedded devices are designed to be inherently connected. Moreover, the
IoT and the Web-of-Things (WoT) paradigms assume that the embedded devices
are connected and are web-enabled. It also almost always implies the presence of
a web-interface. In this section we therefore discuss the security of web interfaces
inside embedded devices and their firmware.

2.3.1 Web Application Security

Web application security is a well established research field with extensive prior
work. Therefore, we focus on aspects of this field which directly relate to the

Large Scale Security Analysis of Embedded Devices’ Firmware

14 2. STATE OF THE ART

work presented in this thesis.

Huang et al. [131] were the first to statically search for web vulnerabilities in
the context of PHP applications. They used a lattice-based analysis algorithm
derived from type systems and type state and found many SQL injection and
XSS vulnerabilities in PHP code. Pixy [139] proposed a technique based on
data flow analysis for detecting XSS, SQL or command injections. RIPS [85],
on the other hand, is a static code analysis approach that uses tainting to de-
tect multiple types of injection vulnerabilities. Bojinov et al. [58] studied the
security of embedded management interfaces and a new class of vulnerabilities
was discovered, namely Cross-Channel Scripting (XCS) [57]. Bencsáth et al. [52]
demonstrate that a full compromise of embedded devices is indeed possible in
practice when XSS infected pages are opened by the device administrator. The
XSS exploitation in turn uses the XCS vulnerabilities to accomplish this attack
on real embedded devices. Balzarotti et al. [44] showed that even if the developer
performs certain sanitization on input data, often XSS attacks are still possible
due to the deficiencies in the sanitization routines. In their work they checked
whether sanitization routines are sufficient, not just that they are present. For
this, they described Saner, a combined static and dynamic analysis to find such
security bugs.

Fong and Okun [112] took a closer look at web application scanners, and their
functions and definitions. The authors proposed a taxonomy of software security
tools and described the types of functions that are generally found in a web
application scanner. Bau et al. [48] conducted an evaluation of the state of
the art tools for automated “black box” web application vulnerability testing.
While results have shown the promise and effectiveness of such tools, they also
proved many limitations of existing tools. For example, the authors found that
variants of XSS and SQLi vulnerabilities were missed by many tools. Similarly,
Doupé et al. [95] performed an evaluation of eleven “black box” web application
vulnerability testing tools, both open-source and commercial. The authors found
that crawling ability is as important and challenging as vulnerability detection
techniques and many classes of vulnerabilities are completely overlooked. They
concluded that more research is required to improve the tools and the techniques
behind those tools. Holm et al. [127] performed a quantitative evaluation of
vulnerability scanning. The authors showed that automated scanning is unable
to accurately identify all vulnerabilities. They also show that scans of Linux-based
hosts are less accurate than the scans of Windows-based ones. Doupé et al. [94]
proposed improvements to the “black box” vulnerability testing tools. First, they
observed the web application state from the outside, which allowed them to
extend their testing coverage. Then they closely controlled the “black box” web
application vulnerability scanner. They implemented their technique in a crawler
linked to a fuzzing component of an open-source web application vulnerability
testing tool.

Gourdin et al. [116] addressed the challenge of building secure embedded web in-

Ph.D. Thesis — Andrei Costin

2.4. FINGERPRINTING AND CLASSIFICATION 15

terfaces by proposing WebDroid, the first framework specifically dedicated to this
purpose. Authors experimentally demonstrated the efficiency of their framework
in terms of performance and security.

2.3.2 Web Application Fingerprinting and Identification

Web application fingerprinting is also a well explored research field. Currently,
several techniques and tools are available for fingerprinting the web applications.

Shah [183] presented early techniques to fingerprint and identify web applications
at the HTTP level. The author proposed a theoretical fingerprint logic based on
multiple methods such as Decision Trees (DT), statistical analysis and Neural
Networks (NN). The author also implemented some of the techniques into the
httprint1 tool. Unfortunately, no evaluation of the accuracy was performed,
moreover, the httprint tool and signatures have not been updated since 2005.
Similarly, the BlindElephant [55] tool attempts to discover the version of a web
application by comparing static files at known locations against precomputed
hashes of those files in all known available version releases. Wapplyzer [200] is a
browser plugin which uses regular expressions to uncover the technologies used
on websites and within web applications. On a similar line, WhatWeb [160] uses
more than 900 plugins to recognize the web technologies used within a website.

On the other hand, Alvarez [39] used the Extended File Information (EXIF)
metadata in JPEG files to generate fingerprints. Likewise, Bongard [59] studied
the implementation differences among the PNG codecs used with the most pop-
ular web application development platforms. The authors proposed to use these
differences to fingerprint and classify web applications.

Salusky and Thomas [176,177] disclosed processes for fingerprinting and identify-
ing client applications based on the analysis of their HTTP requests. The authors
constructed the fingerprint based on the presence and the order of HTTP head-
ers included in a request from a client application or device. Authors showed that
this can be used to assess if a client application is malicious. Similarly, Zarras
et al. [206] monitored the HTTP requests from web clients on network level
and were able to fingerprint the clients by detecting subtle differences in the
implementation of the HTTP protocol of each client.

2.4 Fingerprinting and Classification

Fingerprinting and identification is an established research field with supported
by extensive research. Below we discuss existing work related to this field in the
context of embedded devices and their firmware files.

1http://www.net-square.com/httprint.html

Large Scale Security Analysis of Embedded Devices’ Firmware

http://www.net-square.com/httprint.html

16 2. STATE OF THE ART

2.4.1 Embedded Device Fingerprinting and Identification

Kohno et al. [144] presented a technique for remote physical device fingerprint-
ing by exploiting the fact that modern computer chips have small but remotely
detectable clock skews. Rasmussen and Capkun [60] demonstrated the feasi-
bility of radio fingerprinting of wireless sensor nodes. Their detection scheme
extracts the radio signal transient and its features. The authors were able to cre-
ate radio fingerprints and then identify the origins of the messages. Desmond et
al. [90] proposed a wireless fingerprinting technique that differentiates between
unique devices through timing analysis of 802.11 probe request frames. Franklin
et al. [113] developed a passive fingerprinting technique that identifies the wire-
less device driver running on an 802.11 compliant device. The authors exploited
the fact that most wireless drivers have implemented different active scanning
algorithms.

On the other hand, Eckersley [103] conducted a study showing that various
properties of a user’s browser and plugins can be combined to form a unique
fingerprint of the browser. Subsequently, Nikiforakis et al. [163] examined how
the heavy use of Adobe Flash can lead to web-based device fingerprinting on the
Internet.

Recently, Niemietz and Schwenk [162] used manual fingerprinting of the web
interfaces of ten popular DSL home routers. The authors employed techniques
such as existence of unique or particular files and URLs, as well as presence of
distinguishable strings in HTTP Basic Authentication and Web Interface Au-
thentication prompts. Cui and Stolfo [83] performed a wide-area IPv4 scan and
presented a quantitative analysis of the insecurity of embedded devices. While
the authors found around 540K embedded device connected to the Internet,
they could attribute them to as few as 73 device types which mapped to only 9
functional categories (e.g., VoIP Devices, Home Networking Devices, Camera/-
Surveillance). Unfortunately, the authors did not detail their fingerprinting and
classification methods that lead to their categorization. Also, the small number
of device types (i.e., 73) and functional categories (i.e., 9) compared to the large
number of devices (540K), suggests that the authors likely used coarse-grained
and approximate methods to fingerprint and classify the devices.

2.4.2 File Classification

Fuzzy hashing aims at comparing two different objects (e.g., files, forensic mem-
ory dumps) and provides a measure of their similarity. The two most popular
fuzzy hashes are sdhash [175] and ssdeep [146]. French and Casey [47] pre-
sented fuzzy hashing techniques in applied malware analysis and classification.
The authors used ssdeep on the CERT Artifact Catalog database containing
10.7M files. The study underlined the two fundamental challenges in operational
usage of fuzzy hashing at scale.

Ph.D. Thesis — Andrei Costin

2.5. SUMMARY 17

Bailey et al. [43] and Bayer et al. [50] proposed efficient clustering approaches
to identify and group malware samples at large scale. The authors performed
dynamic analysis to obtain the execution traces of malware programs or obtain
a description of malware behavior in terms of system state changes. These are
then generalized into behavioral profiles which serve as input to an efficient
clustering algorithm that allows authors to handle sample sets that are an order of
magnitude larger than previous approaches. Unfortunately, this approach cannot
be currently applied in our framework since dynamic analysis is unfeasible due
to the heterogeneity of architectures used in firmware images.

2.5 Summary

In this chapter, we presented the related work relevant to the security of embed-
ded devices and their firmware. We first introduced the main real-world security
studies of embedded devices and their firmware. Some of these studies were per-
formed at a large scale. However, these were not particularly aimed at firmware
analysis but rather at embedded devices discovery and limited firmware testing.

We then presented the main efforts in firmware analysis. Recently, a number of
papers on dynamic firmware analysis and firmware emulation emerged. Those
papers bring useful insights, but often require manual intervention and present
many challenges to automate completely. In this section we also showed that
malware developers are also performing firmware analysis. Then they employ
known or unknown firmware vulnerabilities to build malware for and botnets of
vulnerable embedded devices.

Then we reviewed the recent work in web application security. We presented
the main efforts and limitations of the web application security field. We also
presented existing techniques for web application fingerprinting. Subsequently we
reviewed the web application security in the context of embedded web interfaces.

We concluded the related work section by discussing recent work on (remote)
device fingerprinting, and automated file classification and labeling.

To the best of our knowledge, none of these efforts have looked at scalable
techniques to study the firmware for embedded devices. Also, no empirical studies
have been previously conducted to define firmware unique identifiable properties
and representative datasets, prevalence of vulnerability categories, challenges
encountered, and open problems.

The analysis techniques introduced in this dissertation attempt to overcome these
limitations. We achieve this by developing methods that scale in terms of dynamic
and static analysis, and also in terms of machine learning and classification. With
our techniques, we try to address some important challenges and missing points
in large scale analysis of embedded devices. In particular, in the following chapters

Large Scale Security Analysis of Embedded Devices’ Firmware

18 2. STATE OF THE ART

we try to address: the firmware and embedded devices identification in big-data
scenarios; the scalability of the dynamic and static firmware analysis; and finally
the security of the embedded web interfaces.

Ph.D. Thesis — Andrei Costin

Chapter 3

Motivating Example –
Insecurity of Wireless
Embedded Pyrotechnic
Systems

3.1 Introduction

Fireworks are essentially explosives used for entertainment purposes. A fireworks
event , also called a pyrotechnic show or fireworks show , is a display of the ef-
fects produced by fireworks devices. Fireworks devices are designed to produce
effects such as noise, light, smoke, floating materials (e.g., confetti). The fire-
works event and fireworks devices are controlled by fireworks firing systems.
Firing systems, besides fireworks, are often used for other purposes, such as
building demolition, special effects, and military training or simulation.

Despite the fact that fireworks are intended for celebrations, their usage is often
associated with high risks of destruction, injuries, and even death. Many recent
news and research studies show the dangers of fireworks [17, 172]. Sometimes
fireworks are even used as real weapons in street clashes [33]. Fireworks accidents
are often caused by equipment mishandling, not following safety rules or low
quality of the fireworks devices. Another aggravating factor is that fireworks are
generally intended to be displayed in densely crowded and public areas. All these
accidents still happen despite the strict control of the distribution of fireworks
and the need for a professional license to handle such devices.

Classically fireworks firing systems consist of mechanical or electrical switches
and electric wiring (often called shooting wire). This type of setup is simple,
efficient and relatively safe [24]. However, it dramatically limits the effects, com-
plexity and capabilities of the fireworks systems and events. Advances in software,

19

20
3. MOTIVATING EXAMPLE – INSECURITY OF WIRELESS EMBEDDED

PYROTECHNIC SYSTEMS

embedded and wireless technologies allows fireworks systems to take full bene-
fit of them. A modern (wireless) firing system can be considered to be a good
example of a complete Embedded Cyber-Physical System (ECPS) or Wireless
Sensor/Actuator Network (WSAN). Fireworks firing systems are increasingly
relying on wireless, embedded and software technologies. Therefore, they are
exposed to the very same risks as any other ECPS, WSAN or computer system.

Based on recent research, both critical and embedded systems of all types ac-
quired a bad security reputation. For example, airplanes can be spoofed on new
radar systems [76], a car control can be taken over [69, 148] and can be com-
promised to failure [126], an implanted insulin pump can be completely compro-
mised [173] or an array of PLCs in a nuclear facility can be rendered nonfunc-
tional [109,150].

In this chapter we approach the study of firing system risks from the perspective
of computer, embedded and wireless security. We describe our experience in dis-
covering and exploiting a wireless firing system in a short amount of time without
any prior knowledge of such systems. In summary, we demonstrate our method-
ology starting from analysis of firmware to the discovery of vulnerabilities. Our
static analysis helped our decision to acquire such a system which we analyzed
in-depth. This allowed us to confirm the presence of exploitable vulnerabilities
on the actual hardware. Finally, we stress on the need of hardware and software
security and safety compliance enforcement for pyrotechnic firing systems.

3.2 Fireworks Systems Architecture

Figure 3.1 presents a generic diagram of a fireworks firing system. A fireworks
firing system is composed of:

• Remote control modules (also sometimes known as main control) – these
control the entire show, which includes sequencing cues and sending fire
commands. They connect to firing modules by wired or wireless connec-
tions. In simple scenarios a single remote control module is paired with all
firing modules, while in more complex shows there are several remote con-
trol modules, each one paired with a show-specific subset of firing modules.
All remote control modules act independent of each other. Those devices
rely on a microcontroller embedding its own firmware.

• Firing modules – these receive fire commands from remote control mod-
ules and activate minimum ignition current for the igniter clips. Firing
modules are based on micro-controllers and also have their own firmware.

• Wired connections – these are described here for completeness. However,
they do not apply to our case study where remote control and firing mod-
ules are all wireless. Classic fireworks firing systems consist of electric

Ph.D. Thesis — Andrei Costin

3.2. FIREWORKS SYSTEMS ARCHITECTURE 21

Figure 3.1: Generic diagram and components of a wireless firing system.

Large Scale Security Analysis of Embedded Devices’ Firmware

22
3. MOTIVATING EXAMPLE – INSECURITY OF WIRELESS EMBEDDED

PYROTECHNIC SYSTEMS

wiring between remote control and firing modules [24]. Simple connection
cables having End-Of-Line (EOL) resistors are used to securely terminate
wire loops. EOL resistors allow the remote control to monitor the field
wiring for open or short circuit conditions, hence detecting wiring prob-
lems and tampering.

• Wireless transceivers – these enable the wireless connections between
the remote control modules and the firing modules. Those connections
are often performed using 433.92 MHz modules (often capable of using
rolling codes [15]), or 2.4GHz ZigBee compatible (IEEE 802.15.4) modules
which support AES by standard. Those modules rely on microcontrollers
that have their own firmware. The devices we study in section 3.3 are
only communicating with wireless transceivers between the remote control
modules and the firing modules, those actually support AES and several
modes of operation, but do not use it.

• Igniter clips – these connect firing modules to the pyrotechnic devices
housed inside mortars and ignite the fire once firing module activate the
minimum necessary current.

• Mortars – these house the pyrotechnic devices; they also ensure safe
launch and firing of the pyrotechnic device into the sky.

• Pyrotechnic devices – these are the actual pyrotechnic compositions which
produce visual and sound effects in the sky once fire command is activated.

3.2.1 Regulation, Compliance and Certification

Many critical systems, including wireless firing systems, advertise as “Simple,
Reliable, Wireless” or “Proven, Secure, Reliable”. However, such systems must
first address regulation, compliance and certifications in order to be able and
operate in certain geographical regions.

On the one hand, devices with fire-hazard risk, such as pyrotechnics and explo-
sives, must conform to fire protection regulations of the country of manufactur-
ing and/or operation. For USA, it is the National Fire Protection Association
(NFPA). Specifically, NFPA-79 "provides safeguards for industrial machinery to
protect operators, equipment, facilities, and work-in-progress from fire and elec-
trical hazards" [30]. This standard applies to “the electrical/electronic equipment,
apparatus, or systems of industrial machines operating from a nominal voltage of
600 volts or less” . The safety feature provided by this standard is the requirement
of a key-switched operation before any potentially dangerous action can start.

This certification however does not apply to the hardware designs or the firmware
implementations which control NFPA-certified industrial machinery .

Ph.D. Thesis — Andrei Costin

3.3. EXPERIMENTS AND RESULTS 23

On the other hand, all wireless or radio-frequency (RF) modules must comply
with national radio-frequency licensing and allocation plans. This includes Federal
Communications Commission (FCC), CE Marking (Conformité Européenne)
and Industry Canada (IC) certification. The system we analyze contains a Cal-
ifornia Eastern Labs (CEL) IEEE 802.15.4 2.4GHz RF transceiver, which is CE
and FCC certified. However, those certifications do not apply to the security of
the communication channels or network protocols or of the firmware, but only
to the transceiver and its frequencies.

We argue that, given the risk of the devices controlled by such equipment, a
certification, based on a security evaluation of the architecture, firmware and
communications should be mandatory. We show in this chapter that it is not the
case.

As a counter-example we consider the avionics field. Avionics encompass virtu-
ally the entire spectrum of hardware and software involved in the aviation field
where safety and high-risk are considered. All avionics devices must pass strict
compliance testing for both hardware (DO-254) and software (DO-178B) [125].
Despite those certifications there are recent examples of wireless avionics proto-
cols shown to be deployed without sufficient security [76].

3.3 Experiments and Results

3.3.1 Summary

As we detail later in Chapter 4, we performed a large-scale firmware analysis
by crawling the Internet for firmware images. After unpacking firmware images,
we run simple static analysis, correlation and reporting tools on each firmware
image. In this process we discovered the firmware images of a wireless firing
system 1.

Analysis of firmware images for that system has shown us components (strings,
binary code, configurations) which appeared insecure 2. The findings were con-
vincing enough that we acquired the devices for a detailed analysis. Another
factor to motivate the acquisition is that according to the vendor, this system
is used by “over 1000 customers in over 60 countries” .Hence, these systems ap-
pear to be particularly popular among fireworks display companies and can be
exploited on large geographical areas and can impact a wide range of public
events.

1 We deliberately omit the name of the vendor and the system for safety and ethical
reasons.

2 This analysis was performed on the stable firmware as of Nov 2013, meanwhile a new
firmware addressing most of the security issues we discovered was made stable, and is now
deployed.

Large Scale Security Analysis of Embedded Devices’ Firmware

24
3. MOTIVATING EXAMPLE – INSECURITY OF WIRELESS EMBEDDED

PYROTECHNIC SYSTEMS

3.3.2 Firmware Acquisition and Static Analysis

Among many others, our crawlers collected from the Internet several firmware
images, in Intel Hexadecimal Object Files (iHex) format, dedicated to the
the wireless firing system. After unpacking, we use several heuristics, including
keyword matching . keyword matching searches for special keywords such as
backdoor, telnet, UART, shell which often allows to find multiple vulner-
abilities. The firmware images were matching the string Shell>. Based on this
we isolated those firmware images and proceeded to analyze them further with
automated and manual approaches.

We identified several security issues with the firmware images we analyzed. First,
plain iHex format does not provide any encryption or authentication. Therefore,
the firmware updates are openly accessible for study by the attacker, and likely
open to malicious firmware modifications. In addition to this, iHex format pro-
vides mechanisms that can be use by attackers to insert code or data into memory
regions that might have not been designed to be accessible.

3.3.3 Hardware Acquisition and Analysis

The static analysis findings were convincing enough that we acquired the actual
wireless firing system to analyze it further. Indeed, static analysis is known to be
faster and to scale better than dynamic analysis as it does not require access to
the physical devices. However, one important research challenge remains to con-
firm the results of static analysis. The analyzed firmware images were designed
to run on specific embedded devices, without the actual hardware, it is very hard
to confirm the discovered vulnerabilities. Indeed, findings of the static analysis
study may be not exploitable in a live system, e.g., because the vulnerable code
is not executed, or is activated by a configuration option. Even though this could
be discovered by emulation, it is a tedious process in itself as it can be error prone
and a generic emulator would need to be customized to emulate this particular
platform.

These systems usually come bundled with firing modules and remote control
modules. The exact number and placement of each module depends on the setup
and choreography of each fireworks show. Both of these modules contain CEL
MeshConnect 2.4GHz ZigBee (IEEE 802.15.4) transceivers [31]. Both modules
are equipped with key-operated switches, as required by NFPA-79 chapter 9.2.

The modules contain chipsets running SNAP which is a Network Operating Sys-
tem (NOS) from Synapse [108]. Also, the modules provide a servicing serial port
(UART) which provides access to a built-in menu which displays the Shell>
prompt we discovered earlier. This allows testing, repairing and debugging the
remote control module. The UART ports are only accessible by physically remov-
ing the plastic chassis of the modules, thus it can be abused only with physical

Ph.D. Thesis — Andrei Costin

3.3. EXPERIMENTS AND RESULTS 25

attacks. This port could be used for example to manage the AES-128 encryp-
tion keys of the wireless ZigBee transceivers. In addition to the above, the USB
SNAP Stick SS200 [34] provides reprogramming and sniffing functions over
2.4GHz ZigBee (IEEE 802.15.4), and is tailored in particular for SNAP chipsets
and software.

Remote Control Module

A detailed view of main components of the remote control module can be seen
on Figure 3.2. After remote control module’s disassembly, we confirmed that it
uses a ColdFire MCF52254 processor from Freescale [29]. This is consistent
with the result of Motorola m68k family provided by our architecture detection
tool in Section 6.2. It also uses a SST25VF032B flash chip by Microchip [28].

The remote control module exposes a USB port. This port has two main func-
tions. One function is to upload a fireworks show orchestration script. This or-
chestrator script is a CSV file which instructs the main processor of the remote
control module to which firing module and when to send firing cue signals in
order to achieve the planned visual, sound or smoke effects. Another function is
to upgrade the firmware of the main (not wireless) micro-controller unit (MCU)
of the device. This is done via an .ihex file, as described in Section 6.2.

3.3.4 Wireless Analysis

This systems, as many others from other vendors, contains a 2.4GHz ZigBee
(IEEE 802.15.4) CEL MeshConnect transceiver. The discovery, configuration
query and setup, pairing and firmware upgrade of these units is done through
Synapse Portal 3 software. We installed Synapse Portal and then ran the dis-
covery and configuration query. The wireless chipsets on remote control, firing
and firmware reprogramming modules have AES-128 capable firmware installed.
However, the encryption is not enabled, no encryption key is present and AES-
128 seems to be unused. In addition to this, the system’s documentation does
not provide any way to configure the system to enable encryption or authentica-
tion of the communication. Surprisingly, even though those devices are standard
compliant and as such have AES-128 capabilities, neither authentication nor en-
cryption of the messages are used. This is most likely due to the difficulty to
properly setup key management and distribution. Such difficulties could be per-
ceived more as a risk of operational failure during a fireworks show, rather than
a useful security mechanism.

Further analysis revealed that it is possible to upload Python application scripts
to remote wireless chipsets. These scripts are executed in a Python interpreter

3http://www.synapse-wireless.com/snap-components-free-developers-IDE-tools/
portal

Large Scale Security Analysis of Embedded Devices’ Firmware

http://www.synapse-wireless.com/snap-components-free-developers-IDE-tools/portal
http://www.synapse-wireless.com/snap-components-free-developers-IDE-tools/portal

26
3. MOTIVATING EXAMPLE – INSECURITY OF WIRELESS EMBEDDED

PYROTECHNIC SYSTEMS

Figure 3.2: Remote control module’s hardware.

within the wireless chipset’s MCU [31]. The provided interpreter framework is
a subset of Python. Before being uploaded to target nodes, Synapse Portal
compiles these Python scripts into binary form and stores them as SNAPpy files
(with extension .spy) files [32]. The binary form is targeted for the specific MCU
which drives each wireless chipsets. These scripts expose entry-points (functions)
that can be remotely called (via RPC) by other wireless nodes. These scripts can
interact with the MCU of the wireless chipsets or with GPIO-ports of the wireless
chipsets. Usually those GPIO-ports are connected to the main MCU of the remote
control or of the firing module. This allows interaction with the main MCUs as
well as with IO peripherals such as buttons, displays and igniter clips.

The typical use of script entry-points is as follows. The remote control mod-
ules process the CSV orchestration scripts. When it decides a fire command is
required, it sends a ZigBee packet containing a higher-level message to call a
specific entry-point on a specific remote module.

Normal device operation. The usual procedure of normal firing is as fol-
lows. The firing modules are paired with a particular remote control module.
Subsequently, firing modules will accept the arm, disarm and fire commands
only from the paired remote control module. The pairing is enforced by checking
remote control’s 802.15.4 short address (similar to a MAC address filtering).

Ph.D. Thesis — Andrei Costin

3.3. EXPERIMENTS AND RESULTS 27

Figure 3.3: Firing module’s hardware.

The physical key on all firing modules are turned into arm position. The staff
departs to the safe regulatory distance to fire the cues. The key on all remote
control modules are turned to on. The staff confirms everything is safe and
ready, and then presses the arm button on the remote control, which in turn
wirelessly sends a digital arm command to firing modules. The firing modules
enter a confirmed arm, ready for subsequent fire command. The staff starts the
show by sending, either manually or scripted, fire commands to corresponding
firing module’s cues.

Wireless Attacks

The lack of encryption and mutual unit authentication, opens the system to
multiple attacks, in particular sniffing, spoofing and replaying.

We describe a simple attack, yet which we consider as the most dangerous for
the fireworks show staff members. The attacker would perform the following se-
quence of operations in a continuous manner. Eavesdrop the packets (broadcasts,
multicasts, node-to-node), from those learn the 802.15.4 addresses of each re-
mote control and firing modules, and learn their corresponding pairing. For each
learned pair, the attacker spoofs the remote control’s 802.15.4 addresses, spoofs
the digital arm command to the pair’s firing module, and immediately send fire

Large Scale Security Analysis of Embedded Devices’ Firmware

28
3. MOTIVATING EXAMPLE – INSECURITY OF WIRELESS EMBEDDED

PYROTECHNIC SYSTEMS

command for all cues once digital arm confirmation comes from the firing mod-
ule. The consequence of this attack is that as soon as the show operator will turn
the physical key of a given firing module to arm position, it will immediately
receive the sequence of digital arm and fire for all cues. This will fire all the
pyrotechnic loads and in the worst case will not allow enough time for the staff
to depart to the safe distance. Thus it will defeat the physical key safety and
function separation. We successfully implemented this attack using components
described in Section 3.3.4 and tested this attack in practice on the systems we
acquired.

Alternatively, an attacker could easily replace default Python functions responsi-
ble for firing cues, with arbitrary malicious Python functions. For example, each
malicious firing cue function could fire all cues at once instead of firing only
it’s own cue, thus potentially producing a massive chain explosion. Or it could
not fire cues at all or fire them at random, rendering the fireworks show below
expectations. Last but not least, an attacker can remotely set random encryption
keys on remote nodes. This would result in a denial-of-service for the legitimate
user, since her legitimate devices would not be able to communicate with ex-
ploited devices anymore. This can definitely ruin a holiday celebration or produce
disadvantages to competitors in professional fireworks competitions.

Wireless Attack Implementation

SNAP Stick SS200 [34] It is mainly a firmware programmer for the remote
control and firing modules and is based on well-known ATmega128RFA1 chipset
from Atmel. Conveniently, using SNAP Portal ’s utilities, and a special propri-
etary firmware for it, made available by Synapse as ATmega128RFA1_Sniffer ,
it can be turned into a SNAP-specific 802.15.4 sniffer, where it sniffs and de-
codes 802.15.4 packets based on Synapse’s higher level protocol semantics (e.g.,
multicasts, broadcasts, peer or multicast RPC calls). We used it to sniff and
record the packets between remote control and firing modules during their nor-
mal operations. Finally, we also used it to validate our packet injection and replay
attacks. If this sniffer received them, then the remote control and firing modules
would see our rogue packets. Otherwise we had to fix our injector (regardless
the fact that our lower level raw packet sniffer could see them), and then test
again sniffed packets and actual devices’ behavior.

Wireless Attack Tools

We used the following tools for our experiments.

Goodfet [1] It is an embedded bus adapter for various microcontrollers and
radios, additionally proving great open-source support for advanced attacks. It

Ph.D. Thesis — Andrei Costin

3.3. EXPERIMENTS AND RESULTS 29

conveniently provides firmware for TelosB devices to allow sniffing among other
functionalities. We tested our attack with this Goodfet firmware running on
TelosB.

KillerBee [27] It is a framework and tools for exploiting ZigBee and 802.15.4
networks. It conveniently provides a pre-compiled Goodfet firmware for extra
attack functionality. We tested our attack with this Goodfet firmware running
on TelosB.

Crossbow’s TelosB The sniffer based on SS200 is useful for SNAP protocols
and visualization, but it filters out and strips down the packets, hence is largely
limiting. We required a lower level raw packet sniffer. We also required an in-
expensive and open-source supported approach. TelosB hardware and Goodfet
firmware was a perfect fit, so we used them as an additional, much more ver-
bose and raw, sniffer. After learning the SS200 higher level packets for critical
commands we correlated them with raw packets recorded by TelosB-Goodfet.
Alternatively, a Zigduino 4could have been used for this task.

Econotag [23] Econotag is a inexpensive and convenient open-source platform
for 802.15.4 networks. We assembled sequences of packets instructing to arm
and fire sent from the remote control module to the firing module. Finally, we
coded an infinite loop of these sequences in a custom firmware. Once plugged,
the Econotag successfully performs the attack on a firing module once it’s key is
turned to physical arm position. A Zigduino could have been used for this task
as well.

Implementation notes We implemented a simple attack, however it is obvious
and trivial to extend the implementation to automatically and continuously sniff
new firing modules, and subsequently spoof remote control sequences.

3.3.5 Solutions

Below we summarize a set of recommendations that can dramatically increase the
security of the hardware, firmware and wireless communication of the analyzed
wireless firing system. With increased security, a safer operation of the entire
system can be achieved:

• Provide “factory reset button” to a “factory safe” image and state – this
can help reset the wireless chipsets to no encryption state when wireless
crypto key (e.g., AES-128) is forgotten.

4http://www.logos-electro.com/zigduino/

Large Scale Security Analysis of Embedded Devices’ Firmware

http://www.logos-electro.com/zigduino/

30
3. MOTIVATING EXAMPLE – INSECURITY OF WIRELESS EMBEDDED

PYROTECHNIC SYSTEMS

• In “basic mode” – a clear-text and insecure mode, allow only testing func-
tionality (e.g., identification, communication, continuity).

• In “secure mode” – a mutual authenticated and encrypted mode, allow
additional functionality such as fire command to igniter clips and firmware
upgrade of the both main and wireless MCUs.

• Implement “secure scan” techniques [122] – to allow debugging, testing
and restoring of the main MCU and board.

• Remote-code attestation – ensuring, via static or dynamic root of trust,
that safety critical code is not tampered with; this could be achieved
via hardware and firmware modifications, for example as presented in
SMART [104].

• Formal verification – this can dramatically increase security and safety of
firmware, hardware and communication protocols.

• Compliance standards and testing – strict compliance testing for both
hardware and software, similar to DO-254 and DO-178B respectively. This
is also a regulatory issue and should be handled by regulation bodies. We
contacted the French association for Standardization (AFNOR), and the
vendor contacted the American Pyrotechnics Association (APA) and the
Pyrotechnics Guild International (PGI). Unfortunately, this lead to either
no response or to an apparent lack of action taken.

3.4 Future Work

On the one hand, we aim at implementing an attack of wireless remote firmware
upgrade of the main MCU via the 2.4GHz ZigBee (IEEE 802.15.4) chipsets. This
is opposite to the current procedure, where the firmware upgrade is initiated
from a USB stick connected locally to the device under attack. Since we have
the actual devices under our full control, we also aim at using a dynamic analysis
platform for firmware security testing, such as Avatar [203]. An additional aim is
to find vulnerabilities in the CSV parser of the remote control to achieve a USB
plug-and-exploit proof of concept.

On the other hand, we aim at finding solutions to help this particular category of
devices. Solutions not specific to wireless firing systems, include secure firmware
upgrades, encrypted and authorized wireless communication channels, secure
restore and debug chains. Finally, wireless firing systems specific solutions include
secure latency control and secure positioning.

Ph.D. Thesis — Andrei Costin

3.5. SUMMARY 31

3.5 Summary

We presented vulnerability discovery and exploitation of wireless firing systems
in a short amount of time without prior knowledge of such systems. We started
with an automated large-scale framework for firmware crawling and analysis (de-
tailed in Chapter 4). In that experiment we employed simple heuristics (e.g.,
keyword matching) and very simple static analysis. This allowed us to quickly
and automatically isolate firmware images of critically-important remote firing
systems. We were also able to identify several potential vulnerabilities through
both automatic and manual static analysis. These vulnerabilities include unau-
thenticated firmware upgrade, unauthenticated wireless communications, sniffing
and spoofing wireless communications, arbitrary code injection and functionality
trigger, temporary denial-of-service. We successfully implemented and tested an
unsophisticated attack with potentially devastating consequences.

We conclude that, given the risk presented by their usage, the security of wireless
firing systems should be taken very seriously. We also conclude that such systems
must be more rigorously certified and regulated. We stress on the necessity and
urgency to introduce software and hardware compliance verification similar to
DO-178B and DO-254 respectively. We strongly believe these small improvement
steps, along with solutions in Section 3.3.5, can definitely help increase the
security and safety of such wireless embedded systems.

Last but not least, we discussed the issues with the vendor. A firmware update
that is now deployed is addressing most of the security issues. Unfortunately, there
are more than 20 vendors of wireless firing systems that may remain vulnerable
to similar attacks, in particular some of them do not have a firmware update
mechanism.

In this chapter, we demonstrated how security analysis can be performed on a
single device by mainly employing manual analysis. While such analysis is very
useful to discover serious security issues in embedded devices, this approach does
not scale. In the rest of this dissertation we will present techniques to automate
some of the steps of the security analysis process for embedded devices.

Large Scale Security Analysis of Embedded Devices’ Firmware

Chapter 4

A Large Scale Analysis of the
Security of Embedded
Firmware Images

4.1 Introduction

Embedded systems are omnipresent in our everyday life. For example, they are the
core of various Common-Off-The-Shelf (COTS) devices such as printers, mobile
phones, home routers, and computer components and peripherals. They are also
present in many devices that are less consumer oriented such as video surveillance
systems, medical implants, car elements, SCADA and PLC devices, and basically
anything we normally call electronics. The emerging phenomenon of the Internet-
of-Things (IoT) will make them even more widespread and interconnected.

All these systems run special software, often called firmware, which is usually
distributed by vendors as firmware images or firmware updates. Several defi-
nitions for firmware exist in the literature. The term was originally introduced
to describe the CPU microcode that existed “somewhere” between the hardware
and the software layers. However, the word quickly acquired a broader meaning.
The IEEE standard 610.12-1990 [35] extended the definition to cover the “com-
bination of a hardware device and computer instructions or computer data that
reside as read-only software on the hardware device”.

Nowadays, the term firmware is more generally used to describe the software that
is embedded in a hardware device. Like traditional software, embedded devices’
firmware may have bugs or misconfigurations that can result in vulnerabilities
for the devices which run that particular code. Due to anecdotal evidence, em-
bedded systems acquired a bad security reputation, generally based on case by
case experiences of failures. For instance, a car model throttle control fails [126]
or can be maliciously taken over [69, 148]; a home wireless router is found to

33

34
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

have a backdoor [36, 121, 132], just to name a few recent examples. On the
one hand, apart from a few projects that targeted specific devices or software
versions [82,116,181], to date there is still no large-scale security analysis of firm-
ware images. On the other hand, manual security analysis of firmware images
yields very accurate results, but it is extremely slow and does not scale well for a
large and heterogeneous dataset of firmware images. As useful as such individual
reports are for a particular device or firmware version, these alone do not allow
to establish a general judgment on the overall state of the security of firmware
images. Even worse, the same vulnerability may be present in different devices,
which are left vulnerable until those flaws are re-discovered independently by
other researchers [132]. This is often the case when several integration ven-
dors rely on the same subcontractors, tools, or SDKs provided by development
vendors. Devices may also be branded under different names but may actually
run either the same or similar firmware. Such devices will often be affected by
exactly the same vulnerabilities, however, without a detailed knowledge of the
internal relationships between those vendors, it is often impossible to identify
such similarities. As a consequence, some devices will often be left affected by
known vulnerabilities even if an updated firmware is available.

4.1.1 Methodology

Performing a large-scale study of the security of embedded devices by actually
running the physical devices (i.e., using a dynamic analysis approach) has several
major drawbacks. First of all, physically acquiring thousands of devices to study
would be prohibitively expensive. Moreover, some of them may be hard to operate
outside the system for which they are designed — e.g., a throttle control outside
a car. Another option is to analyze existing online devices as presented by Cui
and Stolfo [83]. However, some vulnerabilities are hard to find by just remotely
interacting with the running device. Also, is ethically questionable to perform
any nontrivial analysis on an online system without authorization.

Unsurprisingly, static analysis scales better than dynamic analysis as it does not
require access to the physical devices. Hence, we decided to follow this approach
in our study. Our methodology consists of collecting firmware images for as many
devices and vendors as possible. This task is complicated by the fact that firmware
images are diverse and it is often difficult to tell firmware images apart from
other files. In particular, distribution channels, packaging formats, installation
procedures, and availability of meta-data often depend on the vendor and on
the device type. We then designed and implemented a distributed architecture
to unpack and run simple static analysis tasks on the collected firmware images.
However, the contributions within this chapter are not in the static analysis
techniques we use (for example, we did not perform any static code analysis), but
to show the advantages of an horizontal, large-scale exploration. For this reason,
we implemented a correlation engine to compare and find similarities between all

Ph.D. Thesis — Andrei Costin

4.1. INTRODUCTION 35

the objects in our dataset. This allowed us to quickly “propagate” vulnerabilities
from known vulnerable devices to other systems that were previously not known
to be affected by the same vulnerability.

Most of the steps performed by our system are conceptually simple and could be
easily performed manually on a few devices. However, we identified five major
challenges that researchers need to address in order to perform large scale ex-
periments on thousands of different firmware images. These include the problem
of building a representative dataset (Challenge A in Section 4.2), of properly
identifying individual firmware images (Challenge B in Section 4.2), of unpack-
ing custom archive formats (Challenge C in Section 4.2), of limiting the required
computation resources (Challenge D in Section 4.2), and finally of finding an au-
tomated way to confirm the results of the analysis (Challenge E in Section 4.2).
While in this chapter we do not propose a complete solution for all these chal-
lenges, we discuss the way and the extent to which we dealt with some of these
challenges to perform a systematic, automated, large-scale analysis of firmware
images.

4.1.2 Results Overview

For our experiments we collected an initial set of 759,273 files (totaling 1.8TB
of storage space) from publicly accessible firmware update sites. After filtering
out the obvious noise, we were left with 172,751 potential firmware images.
We then sampled a set of 32,356 firmware candidates that we analyzed using a
private cloud deployment of 90 worker nodes. The analysis and reports resulted
in a 10GB database.

The analysis of sampled files led us to automatically discover and report 39 new
vulnerabilities (fixes for some of these are still pending) and to confirm several
that were already known [121,132]. Some of our findings include:

• We extracted private RSA keys and their self-signed certificates used in
about 35,000 online devices (mainly associated with surveillance cameras).
• We extracted more than 100 hard-coded password hashes. Most of them

were weak, and therefore we were able to easily recover the original pass-
words.
• We identified a number of possible backdoors such as the authorized_-
keys file (which lists the SSH keys that are allowed to remotely connect
to the system), a number of hard-coded telnetd credentials affecting at
least 2K devices, hard-coded web-login admin credentials affecting at least
101K devices, and a number of backdoored daemons and web pages in the
web-interface of the devices.
• Whenever a new vulnerability was discovered (by other researchers or by

us) our analysis infrastructure allowed us to quickly find related devices or

Large Scale Security Analysis of Embedded Devices’ Firmware

36
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

firmware versions that were likely affected by the same vulnerability. For
example, our correlation techniques allowed us to correctly extend the
list of affected devices for variations of a telnetd hard-coded credentials
vulnerability. In other cases, this led us to find a vulnerability’s root problem
spread across multiple vendors.

4.1.3 Contributions

In summary this chapter makes the following contributions:

• We show the advantages of performing a large-scale analysis of firmware
images and describe the main challenges associated with this activity.
• We propose a framework to perform firmware collection, filtering, unpack-

ing and analysis at large scale.
• We implemented several efficient static techniques that we ran on 32, 356 firm-

ware candidates.
• We present a correlation technique which allows to propagate vulnerability

information to similar firmware images.
• We discovered 693 firmware images affected by at least one vulnerability

and reported 39 new CVEs.

4.2 Challenges

As mentioned in the previous section, there are clear advantages of performing
a wide-scale analysis of embedded firmware images. In fact, as is often the case
in system security, certain phenomena can only be observed by looking at the
global picture and not by studying a single device (or a single family of devices)
at a time.

However, large-scale experiments require automated techniques to obtain firm-
ware images, unpack them, and analyze the extracted files. While these are often
easy tasks for a human, they become challenging when they need to be fully au-
tomated. In this section we summarize the five main challenges that we faced
during the design and implementation of our experiments.

Challenge A: Building a Representative Dataset

The embedded systems environment is heterogeneous, spanning a variety of
devices, vendors, architectures, instruction sets, operating systems, and custom
components. This makes the task of compiling a representative and balanced
dataset of firmware images a difficult problem to solve.

Ph.D. Thesis — Andrei Costin

4.2. CHALLENGES 37

The real market distribution of a certain hardware architecture is often unknown,
and it is hard to compare different classes of devices (e.g., medical implants vs.
surveillance cameras). Which of them need to be taken into account to build a
representative firmware dataset? How easy is it to generalize a technique that
has only been tested on a certain brand of routers to other vendors? How easy is
it to apply the same technique to other classes of devices such as TVs, cameras,
insulin pumps, or power plant controllers?

From a practical point of view, the lack of centralized points of collection (such
as the ones provided by anti-virus vendors or public sandboxes in the malware
analysis field) makes it difficult for researchers to gather a large and well triaged
dataset. Firmware often needs to be downloaded from the vendor web pages, and
it is not always simple, even for a human, to tell whether or not two firmware
images are for the same physical device.

Challenge B: Firmware Identification

One challenge often encountered in firmware analysis and reverse engineering
is the difficulty of reliably extracting meta-data from a firmware image. For
instance, such meta-data includes the vendor, the device product code and pur-
pose, the firmware version, and the processor architecture, among many other
details.

In practice, the diversity of firmware file formats makes it harder to even recognize
that a given file downloaded from a vendor website is a firmware at all. Often
firmware updates come in unexpected formats such as HP Printer Job Language
and PostScript documents for printers [73, 74,82], DOS executables for BIOS,
and ISO images for hard disk drives [205].

In many cases, the only source of reliable information is the official vendor docu-
mentation. While this is not a problem when looking manually at a few devices,
extending the analysis to hundreds of vendors and thousands of firmware images
automatically downloaded from the Internet is challenging. In fact, the informa-
tion retrieval process is hard to automate and is error prone, in particular for
certain classes of meta-data. For instance, we often found it hard to infer the
correct version number. This makes it difficult for a large-scale collection and
analysis system to tell which is the latest version available for a certain device,
and even if two firmware images corresponded to different versions for the same
device. This further complicates the task of building an unbiased dataset.

Challenge C: Unpacking and Custom Formats

Assuming the analyst succeeded in collecting a representative and well labeled
dataset of firmware images, the next challenge consists in locating and extracting

Large Scale Security Analysis of Embedded Devices’ Firmware

38
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

important functional blocks (e.g., binary code, configuration files, scripts, web
interfaces) on which static analysis routines can be performed.

While this task would be easy to address for traditional software components,
where standardized formats for the distribution of machine code (e.g., PE and
ELF), resources (e.g., JPEG and GZIP) and groups of files (e.g., ZIP and TAR)
exist, embedded software distribution lacks standards. Vendors have developed
their own file formats to describe flash and memory images. In some cases those
formats are compressed with non-standard compression algorithms. In other cases
those formats are obfuscated or encrypted to prevent analysis. Monolithic firm-
ware, in which the bootloader, the operating system kernel, the applications, and
other resources are combined together in a single memory image are especially
challenging to unpack.

Forensic strategies, like file carving , can help to extract known file formats from
a binary blob. Unfortunately those methods have drawbacks: On the one hand,
they are often too aggressive with the result of extracting data that matches a file
pattern only by chance. On the other hand, they are computationally expensive,
since each unpacker has to be tried for each file offset of the binary firmware
blob.

Finally, if a binary file has been extracted that does not match any known file
pattern, it is impossible to say if this file is a data file, or just another container
format that is not recognized by the unpacker. In general, we tried to unpack
at least until reaching uncompressed files. In some cases, our extraction goes
one step further and tries to extract sections, resources and compressed streams
(e.g., for the ELF file format).

Challenge D: Scalability and Computational Limits

One of the main advantages of performing a wide-scale analysis is the ability
of correlating information across multiple devices. For example, this allowed us
to automatically identify the re-use of vulnerable components among different
firmware images, even from different vendors.

Capturing the global picture of the relationship between firmware images would
require the one-to-one comparison of each pair of unpacked files. Fuzzy hashes
(such as sdhash [175] and ssdeep [146]) are a common and effective solution for
this type of task and they have been successfully used in similar domains, e.g., to
correlate samples that belong to the same malware families [51,98]. However, as
described in more detail in Section 4.3.4, computing the similarity between the
objects extracted from 26,275 firmware images requires 1012 comparisons. Using
the simpler fuzzy hash variant, we estimate that on a single dual-core computer
this task would take approximately 850 days1. This simple estimation highlights

1 This is mainly because comparing fuzzy hashes is not a simple bit string comparison but
actually involves a rather complex algorithm and high computational effort.

Ph.D. Thesis — Andrei Costin

4.2. CHALLENGES 39

one of the possible computational challenges associated with a large-scale firm-
ware analysis. Even if we had a perfect database design and a highly optimized
in-memory database, it would still be hard to compute, store, and query the fuzzy
hash scores of all pairs of unpacked files. A distributed computational infrastruc-
ture can help reduce the total time since the task itself is parallelizable [156].
However, since the number of comparisons grows quadratically with the number
of elements to compare, this problem quickly becomes computationally infeasible
for large image datasets. For example, if one would like to build a fuzzy hash
database for our whole dataset, which is just five times the size of the current
sampled dataset, this effort would already take more than 150 CPU years instead
of 850 CPU days. Our attempt to use the GPU-assisted fuzzy hashing provided
by sdhash [175] only resulted in a limited speedup that was not sufficient to
perform a full-scale comparison of all files in our dataset.

Challenge E: Results Confirmation

The first four challenges were mostly related to the collection of the dataset
and the pre-processing of the firmware images. Once the code or the resources
used by the embedded device have been successfully extracted and identified,
researchers can focus their attention on the static analysis. Even though the
details and goals of this step are beyond the scope this work, in Section 4.3.3 we
present some examples of simple static analysis and we discuss the advantages
of performing these techniques on a large scale.

However, one important research challenge remains regarding the way the results
of static analysis can be confirmed. For example, we can consider a scenario where
a researcher applies a new vulnerability detection technique to several thousand
firmware images. Those images were designed to run on specific embedded de-
vices, most of which are not available to the researcher and would be hard and
costly to acquire. Lacking the proper hardware platform, there is still no way to
manually or automatically test the affected code to confirm or deny the findings
of the static analysis.

For example, in our experiments we identified a firmware image that included
the PHP 5.2.12 banner string. This allowed us to easily identify several vulner-
abilities associated with that version of the PHP interpreter. However, this is
insufficient to determine if the PHP interpreter is vulnerable, since the vendor
may have applied patches to correct known vulnerabilities without this being
reflected in the version string. In addition, the vendor might have used an ar-
chitecture and/or a set of compilation options which produced a non-vulnerable
build of the component. Unfortunately, even if a proof of concept attack exists
for that vulnerability, without the proper hardware it is challenging to test the
firmware and confirm or deny the presence of the problem.

Confirming the results of the static analysis on firmware devices is a tedious task

Large Scale Security Analysis of Embedded Devices’ Firmware

40
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

Internet Public Web Interface

Crawl Submit

Firmware
Datastore

Master

Workers

Distribute

Unpacking
Static Analysis
Fuzzy Hashing

Firmware
Analysis &
Reports DB

Firmware
Analysis
Cloud

Password
Hash Cracker

 Data Enrichment

Correlation
Engine

Figure 4.1: Architecture of the entire system.

requiring manual intervention from an expert. Scaling this effort to thousands of
firmware images is even harder. Therefore, we believe the development of new
techniques is required to accurately deal with this problem at a large scale.

4.3 Experimental Setup

In this section we first present the design of our distributed static analysis and
correlation system. Then we detail the techniques we used, and how we addressed
the challenges described in Section 4.2.

Ph.D. Thesis — Andrei Costin

4.3. EXPERIMENTAL SETUP 41

4.3.1 Architecture

Figure 4.1 presents an overview of our architecture. The first component of
our analysis platform is the firmware data store, which stores the unmodified
firmware files that have been retrieved either by the web crawler or that have
been submitted through the public web interface. When a new file is received
by the firmware data store, it is automatically scheduled to be processed by the
analysis cloud . The analysis cloud consists of a master node, and a number of
worker and hash cracking nodes. The master node distributes unpacking jobs
to the worker nodes (Figure 4.2), which unpack and analyze firmware images.
Hash cracking nodes process password hashes that have been found during
the analysis, and try to find the corresponding plaintext passwords. Apart from
coordinating the worker nodes, the master node also runs the correlation engine
and the data enrichment system modules. These modules improve the reports
with results from the cross-firmware analysis.

The analysis cloud is where the actual analysis of the firmware takes place. Each
firmware image is first submitted to the master node. Subsequently, worker
nodes are responsible for unpacking and analyzing the firmware and for returning
the results of the analysis back to the master node. At this point, the master
node will submit this information to the reports database. If there were any
uncracked password hashes in the analyzed firmware, it will additionally submit
those hashes to one of the hash cracking nodes which will try to recover the
plaintext passwords.

It is important to note that only the results of the analysis and the meta-data of
the unpacked files are stored in the database. Even though we do not currently
use the extracted files after the analysis, we still archive them for future work, or
in case we want to review or enhance a specific set of analyzed firmware images.

The architecture contains two other components: the correlation engine and
the data enrichment system. Both of them fetch the results of the firmware
analysis from the reports database and perform additional tasks. The correlation
engine identifies a number of “interesting” files and tries to correlate them with
any other file present in the database. The enrichment system is responsible for
enhancing the information about each firmware image by performing online scans
and lookup queries (e.g., detecting vendor name, device name/code and device
category).

In the remainder of this section we describe each step of the firmware analysis
in more detail so that our experiments can be reproduced.

4.3.2 Firmware Acquisition and Storage

The first step of our experiments consisted in gathering a firmware collection
for analysis. We achieved this goal by using mainly two methods: a web crawler

Large Scale Security Analysis of Embedded Devices’ Firmware

42
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

that automatically downloads files from manufacturers’ websites and specialized
mirror sites, and a website with a submission interface where users can submit
firmware images for analysis.

We initialized the crawler with tens of support pages from well known manufac-
turers such as Xerox, Bosch, Philips, D-Link, Samsung, LG, Belkin, etc. Second,
we used public FTP indexing engines 2 to search for files with keywords related
to firmware images (e.g., firmware). The result of such searches yields either
directory URLs, which are added to the crawler list of URLs to index and down-
load, or file URLs, which are directly downloaded by the crawler. At the same
time, the script strips filenames out of the URLs to create additional directory
URLs.

Finally, we used Google Custom Search Engines (GCSE) [25] to create cus-
tomized search engines. GCSE provides a flexible API to perform advanced search
queries and returns results in a structured way. It also allows to programmatically
create a very customized CSE on-the-fly using a combination of RESTful and
XML APIs. For example, a CSE is created using support.nikonusa.com as the
“Sites to Search” parameter. Then a firmware related query is used on the CSE
such as “firmware download”. The CSE from the above example returns 2,210
results at the time of this publication. The result URLs along with associated
meta-data are retrieved via the JSON API. Each URL was then used by the
crawler or as part of other dynamic CSE, as previously described. This allowed
us to mine additional firmware images and firmware repositories.

We chose not to filter data at collection time, but to download files greedily,
deciding at a later stage if the collected files were firmware images or not. The
reason for this decision is two-fold. First, accompanying files such as manuals
and user guides can be useful for finding additional download locations or for
extracting contained information (e.g., model, default passwords, update URLs).
Second, as we mentioned previously, it is often difficult to distinguish firmware
images from other files. For this reason, filtering a large dataset is better than
taking a chance to miss firmware files during the downloading phase. In total, we
crawled 284 sites and stopped downloading once the collection of files reached
1.8TB of storage. The actual storage required for this amount of data is at least
3-4 times larger, since we used mirrored backup storage, as well as space for
keeping the unpacked files and files generated during the unpacking (e.g., logs
and analysis results).

The public web submission interface provides a means for security researchers
to submit firmware files for analysis. After the analysis is completed, the plat-
form produces a report with information about the firmware contents as well
as similarities to other firmware in our database. We have already received tens
of firmware images through the submission interface. While this is currently a

2FTP indexing engines such as: www.mmnt.ru, www.filemare.com, www.filewatcher.
com, www.filesearching.com, www.ftpsearch.net, www.search-ftps.com

Ph.D. Thesis — Andrei Costin

www.mmnt.ru
www.filemare.com
www.filewatcher.com
www.filewatcher.com
www.filesearching.com
www.ftpsearch.net
www.search-ftps.com

4.3. EXPERIMENTAL SETUP 43

marginal source of firmware files, we expect that more firmware will be submitted
as we advertise our service. This will also be a unique chance to have access to
firmware images that are not generally available and, for example, need to be
manually extracted from a device.

Files fetched by the web crawler and received from the web submission interface
are added to the firmware data store. Files are simply stored on a file system and
a database is used for meta-data (e.g., file checksum, size, download location).

4.3.3 Unpacking and Analysis

The next step towards the analysis of a firmware image is to unpack and extract
the contained files or objects. The output of this phase largely depends on the
type of firmware. In some examples, executable code and resources (such as
graphics files or HTML code) can be linked into a binary blob that is designed
to be directly copied into memory by a bootloader and then executed. Some
other firmware images are distributed in a compressed and obfuscated file which
contains a block-by-block copy of a flash image. Such an image may consist of
several partitions containing a bootloader, a kernel and a file system.

Unpacking Frameworks

There are three main tools to unpack arbitrary firmware images: binwalk [117],
FRAK [81] and Binary Analysis Toolkit (BAT) [192].

The binwalk package is a well known firmware unpacking tool developed by Craig
Heffner [117]. It uses pattern matching to locate and carve files from a binary
blob. Additionally, it also extracts meta-data such as license strings.

FRAK is an unpacking toolkit first presented by Cui et al. [82]. Even though the
authors mention that the tool would be made publicly available, we were not
able to obtain a copy. We therefore had to evaluate its unpacking performance
based on the device vendors and models that FRAK supports, according to [82].
We estimated that FRAK would have unpacked less than 1% of the files we
analyzed, while our platform was able to unpack more than 81% of them. This
said, both would be complementary as some of the file formats FRAK unpacks
are not supported by our tool at present.

The Binary Analysis Toolkit (BAT), formerly known as GPLtool, was originally
designed by Tjaldur software to detect GPL violations [123, 192]. To this end,
it recursively extracts files from a firmware blob and matches strings with a
database of known strings from GPL projects. Additionally, like binwalk, BAT
supports file carving.

Table 4.1 shows a simple comparison of the unpacking performance of each
framework on a few samples of firmware images. We chose to use BAT because

Large Scale Security Analysis of Embedded Devices’ Firmware

44
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

Table 4.1: Comparison of Binwalk, BAT, FRAK and our framework. The last three
columns show if the respective unpacker was able to extract the firmware. Note that
this is a non statistically significant sample which is given for illustrating unpacking
performance (manual analysis of each firmware is time consuming). As FRAK was not
available for testing, its unpacking performance was estimated based on information
from [81]. The additional performance of our framework stems from the many cus-
tomizations we have incrementally developed over BAT (Figure 4.2).

Device Vendor OS Binwalk BAT FRAK
Our

framework
PC Intel BIOS 7 7 7 7

Camera STL Linux 7 3 7 3

Router Bintec - 7 7 7 7

ADSL
Gateway

Zyxel ZynOS 3 3 7 3

PLC Siemens - 3 3 7 3

DSLAM - - 3 3 7 3

PC Intel BIOS 3 3 7 3

ISDN
Server

Planet - 3 3 7 3

Voip Asotel Vxworks 3 3 7 3

Modem - - 7 7 7 3

Home
Automation

Belkin Linux 7 7 7 3

55% 64% 0% 82%

it is the most complete tool available for our purpose. It also has a significantly
lower rate of false positive extractions compared to binwalk. In addition, binwalk
did not support recursive unpacking at the time when we decided on an unpacking
framework. Nevertheless, the interface between our framework and BAT has
been designed to be generic so that integrating other unpacking toolkits (such
as binwalk) is easy.

We developed a range of additional plugins for BAT. These include plugins which
extract interesting strings (e.g., software versions or password hashes), add un-
packing methods, gather statistics and collect interesting files such as private
key files or authorized_keys files. In total we added 35 plugins to the existing
framework.

Ph.D. Thesis — Andrei Costin

4.3. EXPERIMENTAL SETUP 45

 Standard BAT

OS/Arch Passwords/KeysUnpackers Others [...]

Our Patches and
Extensions to BAT

Distributed Platform Glue Code

O
ur

P

lu
gi

ns
O

ur

P
la

tf
or

m
Entropy

Figure 4.2: Architecture of a single worker node.

Password Hash Cracking

Password hashes found during the analysis phase are passed to a hash cracking
node. These nodes are dedicated physical hosts with a Nvidia Tesla GPU [152]
that run a CUDA-enabled [164] version of John The Ripper [165]. John The
Ripper is capable of brute forcing most encoded password hashes and detecting
the type of hash and salt used. In addition to this, a dictionary can be provided to
seed the password cracking. For each brute force attempt, we provide a dictionary
built from common password lists and strings extracted from firmware files,
manuals, readme files and other resources. This allows to find both passwords
that are directly present in those files as well as passwords that are weak and
based on keywords related to the product.

Parallelizing the Unpacking and Analysis

To accelerate the unpacking process, we distributed this task on several worker
nodes. Our distributed environment is based on the distributed-python-for-
scripting framework [187]. Data is synchronized between the repository and
the nodes using rsync (over ssh) [193].

Our loosely coupled architecture allows us to run worker nodes virtually anywhere.
For instance, we instantiated worker virtual machines on a local VMware server
and several OpenStack servers, as well as on Amazon EC2 instances. At the time
of this publication we are using 90 such virtual machines to analyze firmware files.

4.3.4 Correlation Engine

The unpacked firmware images and analysis results are stored into the analysis
& reports database. This allows us to perform queries, to generate reports and
statistics, and to easily integrate our results with other external components.
The correlation engine is designed to find similarities between different firmware

Large Scale Security Analysis of Embedded Devices’ Firmware

46
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

images. In particular, the comparison is made along four different dimensions:
shared credentials, shared self-signed certificates, common keywords, and fuzzy
hashes of the firmware and objects inside it.

Shared Credentials and Self-Signed Certificates

Shared credentials (such as hard coded non-trivial passwords) and shared self-
signed certificates are effective in finding strong connections between different
firmware images of the same vendor, or even firmware from different vendors.
For example, we were able to correlate two brands of CCTV systems based on
the fact that they shared a strong default password.

Therefore, finding a password of one vendor’s product can directly impact the
security of others. We also found a similar type of correlation for two other CCTV
vendors that we linked through the same self-signed certificate, as explained in
Section 4.5.2.

Keywords

Keywords correlation is based on specific strings extracted by our static analysis
plugins. In some cases, for example in Section 4.5.1, the keyword “backdoor”
revealed several other keywords. By using the extended set of keywords we clus-
tered several vendors prone to the same backdoor functionality, possibly affecting
500, 000 devices. In other cases, files inside firmware images contain compila-
tion and SDK paths. This turns out to be sufficient to cluster firmware images
of different devices.

Fuzzy hashes

Fuzzy hash triage (comparison, correlation and clustering) is the most generic
correlation technique used by our framework. The engine computes both the
ssdeep and the sdhash of every single object extracted from the firmware image
during the unpacking phase. This is a powerful technique that allows us to find
files that are “similar” but for which a traditional hash (such as MD5 or SHA1)
would not match. Unfortunately, as we already mentioned in Section 4.2, a
complete one-to-one comparison of fuzzy hashes is currently infeasible on a large
scale. Therefore, we compute the fuzzy hashes of each file that was successfully
extracted from a firmware image and store this result. When a file is found to be
interesting we perform the fuzzy hash comparison between this file’s hash and
all stored hashes.

For example, a file (or all files unpacked from a firmware) may be flagged as in-
teresting because it is affected by a known vulnerability, or because we found it to

Ph.D. Thesis — Andrei Costin

4.3. EXPERIMENTAL SETUP 47

be vulnerable by static analysis. If another firmware contains a file that is similar
to a file from a vulnerable firmware, then there might be a chance that the first
firmware is also vulnerable. We present such an example in Section 4.5.3, where
this approach was successful and allowed us to propagate known vulnerabilities
of one device to other similar devices of different vendors.

Future work

In the literature, there are several approaches proposed to perform comparison,
clustering, and triage on a large scale. Jang et al. propose large-scale triage tech-
niques of PC malware in BitShred [138]. The authors concluded that at the rate
of 8,000 unique malware samples per day, which required 31M comparisons, it
is unfeasible on a single CPU to perform one-to-one comparisons to find mal-
ware families using hierarchical clustering. French and Casey [47] propose, before
fuzzy hash comparison, to perform a “bins” partitioning approach based on the
block and file sizes. This approach, for their particular dataset and bins parti-
tioning strategy, allowed on average to reduce the search space for a given fuzzy
hash down to 16.9%. Chakradeo et al. [68] propose MAST, an effective and
well performing triage architecture for mobile market applications. It solves the
manual and resource-intensive automated analysis at market-scale using Multiple
Correspondence Analysis (MCA) statistical method.

As a future work, there are several possible improvements to our approach.
For instance, instead of performing all comparisons on a single machine, we
could adopt a distributed comparison and clustering infrastructure, such as the
Hadoop implementation of MapReduce [88] used by BitShred. Second, on each
comparison and clustering node we could use the “bins” partitioning approach
from French and Casey [47].

4.3.5 Data Enrichment

The data enrichment phase is responsible for extending the knowledge base
about firmware images, for example by performing automated queries and pas-
sive scans over the Internet. In the current prototype, the data enrichment relies
on two simple techniques. First, it uses the <title> tag of web pages and
authentication realms of web servers when these are detected inside a firm-
ware. This information is then used to build targeted search queries (such as
“intitle:Router ABC-123 Admin Page”) for both Shodan [155] and GCSE.

Second, we correlate SSL certificates extracted from firmware images to those
collected by the ZMap project. ZMap was used in [102] to scan the whole IPv4
address space on the 443 port, collecting SSL certificates in a large database.

Correlating these two large-scale databases (i.e., ZMap’s HTTPS survey and our
firmware database) provides new insights. For example, we are able to quickly

Large Scale Security Analysis of Embedded Devices’ Firmware

48
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

evaluate the severity of a particular vulnerability by identifying the IP addresses of
publicly reachable devices that are running a given firmware image. This provides
a good estimate for the number of publicly accessible vulnerable devices.

For instance, our framework found 41 certificates having unprotected private
keys. Those keys were extracted from firmware images in the unpacking and
analysis phase. The data enrichment engine subsequently found the same self-
signed certificate in over 35K devices reachable on the Internet. We detail this
case study in Section 4.5.2.

4.3.6 Setup Development Effort

Our framework relies on many existing tools. In addition to this, we have put
a considerable effort (over 20k lines of code according to sloccount [201]) to
extend BAT, develop new unpackers, create the results analysis platform and run
results interpretation.

4.4 Dataset and Results

In this section we describe our dataset and we present the results of the global
analysis, including the discussion of the new vulnerabilities and the common bad
practices we discovered in our experiments. In Section 5.5, we will then present
a few concrete case studies, illustrating how such a large dataset can provide
new insights into the security of embedded systems.

4.4.1 General Dataset Statistics

While we currently collect firmware images from multiple sources, most of the
images in our dataset have been downloaded by crawling the Internet. As a
consequence, our dataset is biased towards devices for which firmware updates
can be found online, and towards known vendors that maintain well organized
websites.

We also decided to exclude firmware images of smartphones from our study.
In fact, popular smartphone firmware images are complete operating system
distributions, most of them iOS, Android or Windows based – making them
closer to general purpose systems than to embedded devices.

Our crawler collected 759,273 files, for a total of 1.8TB of data. After filtering
out the files that were clearly unrelated (e.g., manuals, user guides, web pages,
empty files) we obtained a dataset of 172,751 files. Our architecture is constantly
running to fetch more samples and analyze them in a distributed fashion. At the
time of this publication the system was able to process (unpack and analyze)
32,356 firmware images.

Ph.D. Thesis — Andrei Costin

4.4. DATASET AND RESULTS 49

Firmware Identification The problem of properly identifying a firmware image
(Challenge 2) still requires a considerable amount of manual effort. Doing so
accurately and automatically at a large scale is a daunting task. Nevertheless,
we are interested in having an estimate of the number of actual firmware images
in our dataset.

For this purpose we manually analyzed a number of random samples from our
dataset of 172,751 potential firmware images and computed a confidence inter-
val [61] to estimate the global representativeness in the dataset. In particular,
after manually analyzing 130 random files from the total of 172,751, we were
able to mark only 44 to be clearly firmware images. With a confidence of 95%,
this translates to a proportion of 34% (± 8%) firmware images on our dataset.
The manual analysis process took approximately one person-week because the
inspection of the extracted files for firmware code is quite tedious.

We can therefore expect our dataset to contain between 44,431 and 72,520
firmware images (by applying 34%−8%, and 34%+8% respectively, to the entire
candidates set of 172,751). While the range is still relatively large, this estimation
gives a 95% reliable measure of the useful data in our sample. We also developed
a heuristic to automatically detect if a file is successfully unpacked or not. This
heuristic takes multiple parameters, such as the number, type and size of files
carved out from a firmware, into account. Such an empirical heuristic is not
perfect, but it can guide our framework to mark a file as unpacked or not, and
then take actions accordingly.

Files Analysis As described in Section 4.3.3, unpacking unknown files is an
error-prone and time-consuming task. In fact, when the file format is not recog-
nized, unpacking relies on a slow and imprecise carving approach. File carving is
essentially an attempt to unpack at every offset of the file, iterating over several
known signatures (e.g., archive magic headers).

As a result, out of the 32,356 files we processed so far, 26,275 were successfully
unpacked. The process is nevertheless continuous and more firmware images are
being unpacked over time.

4.4.2 Results Overview

In the rest of the section we present the results of the analysis performed by our
plugins right after each firmware image was unpacked.

Files Formats The majority of initial files being unpacked were identified as
compressed files or raw data. Once unpacked, most of those firmware images
were identified as targeting ARM (63%) devices, followed by MIPS (7%). As

Large Scale Security Analysis of Embedded Devices’ Firmware

50
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

linux

vxworks

nucleus

windows ce

ecos

ambarella

rtems

fm11−os

2 and more

1 10 100 1000 10000

Detections (log)

O
S

Figure 4.3: OS distribution among firmware images.

reported in Figure 4.3, Linux is the most frequently encountered embedded op-
erating system in our dataset – being present in more than three quarters (86%)
of all analyzed firmware images. The remaining images contain proprietary oper-
ating systems like VxWorks, Nucleus RTOS and Windows CE, which altogether
represent around 7%. Among Linux based firmware images, we identified 112 dis-
tinct Linux kernel versions.

Password Hashes Statistics Files like /etc/passwd and /etc/shadow store
hashed versions of account credentials. These are usual targets for attackers since
they can be used to retrieve passwords which often allow to login remotely to a
device at a later time. Hence, an analysis of these files can help understanding
how well an embedded device is protected.

Our plugin responsible for collecting entries from /etc/passwd and /etc/shadow
files retrieved 100 distinct password hashes, covering 681 distinct firmware im-
ages and belonging to 27 vendors. We were also able to recover the plaintext
passwords for 58 of those hashes, which occur in 538 distinct firmware images.
The most popular passwords were <empty>, pass, logout, and helpme. While
these may look trivial, it is important to stress that they are actually used in a
large number of embedded devices.

Certificates and Private RSA Keys Statistics Many vendors include self-
signed certificates inside their firmware images [119, 120]. Due to bad practices
in both release management and software design, some vendors also include
the private keys (e.g., PEM, GPG), as confirmed by recent advisories [134,136].

Ph.D. Thesis — Andrei Costin

4.4. DATASET AND RESULTS 51

We developed two simple plugins for our system which collect SSL certificates
and private keys. These plugins also collect their fingerprints and check for empty
or trivial passphrases. So far, we have been able to extract 109 private RSA keys
from 428 firmware images and 56 self-signed SSL certificates out of 344 firmware
images. In total, we obtained 41 self-signed SSL certificates together with their
corresponding private RSA keys. By looking up those certificates in the public
ZMap datasets [101], we were able to automatically locate about 35,000 active
online devices.

For all these devices, if the certificate and private key are not regenerated on the
first boot after a firmware update, HTTPS encryption can be easily decrypted
by an attacker by simply downloading a copy of the firmware image. In addition,
if both a regenerated and a firmware-shipped self-signed certificate are used
interchangeably, the user of the device may still be vulnerable to man-in-the-
middle (MITM) attacks.

Packaging Outdated and Vulnerable Software Another interesting finding
relates to bad release management by embedded firmware vendors. Firmware
images often rely on many third-party software and libraries. Those keep updating
and have security fixes every now and then. OWASP Top Ten [166] lists “Using
Components with Known Vulnerabilities” at position nine and underlines that
“upgrading to these new versions is critical” .

In one particular case, we identified a relatively recently released firmware image
that contained a kernel (version 2.4.20) that was built and packaged ten years
after its initial release. In another case, we discovered that some recently released
firmware images contained nine years old BusyBox versions.

Building Images as root While prototyping, putting together a build environ-
ment as fast as possible is very important. Unfortunately, sometimes the easiest
solution is just to setup and run the entire toolchains as superuser.

Our analysis plugins extracted several compilation banners such as Linux version
2.6.31.8-mv78100 (root@ubuntu) (gcc version 4.2.0 20070413 (prerelease))
Mon Nov 7 16:51:58 JST 2011 or BusyBox v1.7.0 (2007-10-15 19:49:46
IST).

24% of the 450 unique banners we collected containing the user@host combina-
tions were associated to the root user. In addition to this, among the 267 unique
hostnames extracted from those banners, ten resolved to public IP addresses and
one of these even accepted incoming SSH connections.

All these findings reveal a number of unsafe practices ranging from build man-
agement (e.g., build process done as root) to infrastructure management (e.g.,
build hosts reachable over public networks), to release management (e.g., user-
names and hostnames not removed from production release builds).

Large Scale Security Analysis of Embedded Devices’ Firmware

52
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

Web Servers Configuration We developed plugins to analyze the configura-
tion files of web servers embedded in the firmware images such as lighttpd.conf
or boa.conf. We then parsed the extracted files to retrieve specific configura-
tion settings such as the running user, the documents root directory, and the file
containing authentication secrets. We collected in total 847 distinct web server
configuration files and the findings were discouraging. We found that in more
than 81% of the cases the web servers were configured to run as a privileged
user (i.e., having a setting such as user=root). This reveals unsafe practices
of insecure design and configuration. Running the web server of an embedded
device with unnecessarily high privileges can be extremely risky since the security
of the entire device can be compromised by finding a vulnerability in one of the
web components.

4.5 Case Studies

4.5.1 Backdoors in Plain Sight

Many backdoors in embedded systems have been reported recently, ranging from
very simple cases [121] to others that were more difficult to discover [135,185].
In one famous case [121], the backdoor was found to be activated by the string
“xmlset_roodkcableoj28840ybtide” (i.e., edit by 04882 joel backdoor
in reverse). This fully functional backdoor was affecting three vendors. Interest-
ingly enough, this backdoor may have been detected earlier by a simple keyword
matching on the open source release from the vendor [22].

Inspired by this case, we performed a string search in our dataset with various
backdoor related keywords. Surprisingly, we found 1198 matches, in 326 firmware
candidates.

Among those search results, several matched the firmware of a home automation
device from a major vendor. According to download statistics from Google Play
and Apple App Store, more than half a million users have downloaded an app
for this device [37,38].

We manually analyzed the firmware of this Linux-based embedded system and
found that a daemon process listens on a network multicast address. This service
allows execution of remote commands with root privileges without any authen-
tication to anybody in the local network. An attacker can easily gain full control
if he can send multicast packets to the device.

We then used this example as a seed for our correlation engine. With this
approach we found exactly the same backdoor in two other classes of devices
from two different vendors. One of them was affecting 109 firmware images of
44 camera models of a major CCTV solutions vendor, Vendor C . The other

Ph.D. Thesis — Andrei Costin

4.5. CASE STUDIES 53

case is affecting three firmware images for home routers of a major networking
equipment vendor, Vendor D .

We investigated the issue and found that the affected devices were relying on the
same provider of a System on a Chip (SoC) for networking devices. It seems that
this backdoor is intended for system debugging, and is part of a development
kit. Unfortunately we were not able to locate the source of this binary. We plan
to acquire some of those devices to verify the exploitability of the backdoor.

4.5.2 Private SSL Keys

In addition to the backdoors left in firmware images from Vendor C , we also
found many firmware images containing public and private RSA key pairs. Those
unprotected keys are used to provide SSL access to the CCTV camera’s web
interface. Surprisingly, this private key is the same across many firmware images
of the same brand.

Our platform automatically extracts the fingerprint of the public keys, private
keys and SSL certificates. Those keys are then searched in ZMap’s HTTPS survey
database [101,102]. Vendor C ’s SSL certificate was found to be used by around
30K online IP addresses, most likely each corresponding to a single online device.
We then fetched the web pages available at those addresses (without trying to
authenticate). Surprisingly, we found CCTV cameras branded by another vendor
– Vendor B – which appears to be an integrator . Upon inspection, cameras of
Vendor B served exactly the same SSL certificate as cameras from Vendor C
(including the SSL Common Name, and SSL Organizational Unit as well as
many other fields of the SSL certificate). The only difference is that CCTV
cameras of Vendor B returned branded authentication realms, error messages
and logos. The correlation engine findings are summarized in Figure 4.4.

Unfortunately, the firmware images from Vendor B do not seem to be publicly
available. We are planning to obtain a device to extract its firmware and to
confirm our findings. We have reported these issues to the vendor. Nevertheless,
it is very likely that devices from Vendor B are also vulnerable to the multi-
cast packet backdoor given the clear relationship with Vendor C that that our
platform discovered.

4.5.3 XSS in WiFi Enabled SD Cards?

SD cards are often more complex than one would imagine. Most SD cards actually
contain a processor which runs firmware. This processor often manages functions
such as the flash memory translation layer and wear leveling. Security issues have
been previously shown on such SD cards [202].

Some SD cards have an embedded WiFi interface with a full fledged web server.
This interface allows direct access to the files on the SD card without ejecting

Large Scale Security Analysis of Embedded Devices’ Firmware

54
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

Analysis & Reports
Database

Private RSA keys with
cracked passphrase

VendorC

HTTPS Ecosystem Scans

VendorB

SAME private RSA
SAME self-signed SSL certificate
DIFFERENT vendor

Device1

Device2

Check ZMap
IP addresses

Common
Vulnerable
Components

Figure 4.4: Correlation engine and shared self-signed certificates clustering.

Ph.D. Thesis — Andrei Costin

4.6. FUTURE WORK 55

it from the device in which it is inserted. It also allows administration of the SD
card configuration (e.g., WiFi access points).

We manually found a Cross Site Scripting (XSS) vulnerability in one of these
web interfaces, which consists of a perl based web application. As this web
application does not have platform specific binary bindings, we were able to load
the files inside a similar Boa web server on a PC and confirm the vulnerability.

Once we found the exact perl files responsible for the XSS, we used our corre-
lation engine based on fuzzy hashes. With this we automatically found another
SD card firmware that is vulnerable to the same XSS. Even though the perl
files were slightly different, they were clearly identified as similar by the fuzzy
hash. This correlation would not have been detected by a normal checksum or
by a regular hash function.

The process is visualized in Figure 4.5. The file (*) was found vulnerable. Subse-
quently, we identified correlated files based on fuzzy hashing. Some of them were
related to the same firmware or a previous version of the firmware of the same
vendor (in red). Also, fuzzy hash correlation identified a similar file in a firmware
from a different vendor (in orange) that is vulnerable to the same weakness. It
further identified some non-vulnerable or non-related files from other vendors (in
green).

Those findings are reported as CVE-2013-5637 and CVE-2013-5638. We were
also able to confirm this vulnerability and extend the list of affected versions for
one of these vendors.

However, such manual vulnerability confirmation does not scale. Therefore, we
integrated some of the static analysis tools [16,44,85,105,139] into our scalable
framework. Also, we developed dynamic analysis techniques that scale. In Chap-
ter 5 we show these techniques integrate in our framework and we demonstrate
their effectiveness by finding vulnerabilities in real world firmware images.

4.6 Future Work

We plan to continue collecting new data and extend our analysis to all the
firmware images we downloaded so far. Moreover, we want to extend our system
with more sophisticated static analysis techniques that allow a more in-depth
study of each firmware image. This approach shows a lot of potential and besides
the few previously mentioned case studies it can lead to new interesting results
such as the ones presented in Chapter 3.

Large Scale Security Analysis of Embedded Devices’ Firmware

56
4. A LARGE SCALE ANALYSIS OF THE SECURITY OF EMBEDDED FIRMWARE

IMAGES

Same Vendor

*

Same Firmware

Figure 4.5: Fuzzy hash clustering and vulnerability propagation. A vulnerability was
propagated from a seed file (*) to other two files from the same firmware and three
files from the same vendor (in red) as well as one file from another vendor (in orange).
Also four non-vulnerable files (in green) have a strong correlation with vulnerable files.
Edge thickness displays the strength of correlation between files.

4.7 Summary

In this chapter we presented a large-scale static analysis of embedded firmware
images. We showed that a broader view on firmware is not only beneficial, but
actually necessary for discovering and analyzing vulnerabilities of embedded de-
vices. Our study helps researchers and security analysts to put the security of
particular devices in context, and allows them to see how known vulnerabilities
that occur in one firmware reappear in the firmware of other manufacturers. The
summarized datasets are available at http://firmware.re/usenixsec14.

In the following next two chapters we describe several improvements to our
framework. In Chapter 5, we attempt to emulate the firmware images by run-
ning the unpacked firmware inside the QEMU emulator. We do this to allow a
scalable dynamic and static analysis. We show the effectiveness of the improve-
ment by performing scalable analysis of embedded web interfaces within several
hundreds of firmware images. Then, in Chapter 6, we apply machine learning to
classify and label unknown firmware images. We also use multi-score fusion at the
HTTP level to fingerprint embedded online devices. With these improvements,
we partially address the “Building a Representative Dataset”, “Firmware Iden-
tification”, “Scalability and Computational Limits”, and “Results Confirmation”
challenges presented in Section 4.2.

Ph.D. Thesis — Andrei Costin

http://firmware.re/usenixsec14

Chapter 5

Dynamic Firmware Analysis
at Scale: A Case Study on
Embedded Web Interfaces

5.1 Introduction

During the past few years, embedded devices became more connected forming
what is called the Internet of Things (IoT). Such devices are often put online
by composition; attaching a communication interface to an existing (insecure)
device. Most of these devices lack the user interface of desktop computers (e.g.,
keyboard, video, mouse), but nevertheless need to be administered. Albeit some
devices rely on custom protocols such as “thick” clients or even legacy interfaces
(i.e., telnet), the web quickly became the universal “de facto” administration
interface. Therefore, the firmware of these devices often embed a web server
running from simple to fairly complex web applications. For the rest of this
chapter, we will refer to these as embedded web interfaces.

It is well known that making secure web applications is a difficult task. In partic-
ular, researchers showed that more than 70% of vulnerabilities are hosted in the
(web) application layer [171]. Attackers, who are familiar with this fact, use a va-
riety of techniques to exploit web applications. Well known vulnerabilities, such
as SQL injection [62] or Cross Site Scripting (XSS) [199], are still frequently
exploited and constitute a significant portion of the vulnerabilities discovered
each year [71]. Additionally, vulnerabilities such as Cross Site Request Forgery
(CSRF) [45], command injection [188], and HTTP response splitting [142] are
also quite often present in web applications.

Given such a track record of security problems in both embedded systems and
web applications, it is natural to expect the worse from embedded web interfaces.

57

58
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

However, as we will discuss, those vulnerabilities are not easy to discover, analyze
and confirm.

Analysis of embedded web interfaces. While there are solutions that can
be used during the design phase of the software [128, 153, 178, 179], it is also
important to discover and patch existing vulnerabilities before they are found
and abused “in the wild” by the attackers. One way to do so, is to use a “white
box” approach, using static analysis of the source code [44,85,93,140]. Another
technique is dynamic analysis, where the web interface is typically exercised
against a number of known attack patterns [48, 58].

Unfortunately, those tools are either inefficient or difficult to use for detecting
vulnerabilities of embedded web servers [48, 112]. Performing static analysis on
embedded web interfaces is a rather simple task once the firmware has been un-
packed. However, one main limitation of this approach is that the web interfaces
often rely on various languages (e.g., PHP, CGIs, custom server-side languages),
but the static analysis tools are usually designed for a particular one. In addition
to that, many static analysis tools are merely “glorified greps” and have a large
number of False Positives (FP), which makes them problematic to reliably use in
a large scale study. On the other hand, dynamic analysis tools [110,130] are more
generic as they are less sensitive to the server-side language used. Nevertheless,
they require the web interface to be functional. Unfortunately, it is difficult to
create an environment that can perfectly emulate firmware images for various
devices based on a variety of computing architectures and hardware designs.

Scalable dynamic analysis of embedded web interfaces. The easiest way
to preform dynamic analysis is to perform it on a live device. However, acquiring
devices to dynamically analyze them is not scalable. Also it is ethically ques-
tionable, if not illegal, to test devices one does not own (e.g., devices on the
Internet). Another option would be to extract the web interface files from a device
and load them in a test environment, like an Apache web server. Unfortunately,
a large majority of the embedded web interfaces use native CGIs, bindings to
local architecture-dependent tools or custom web server features which cannot
be easily reproduced in a different environment (Section 5.2.4).

Emulating the firmware is an elegant method to perform dynamic analysis of a
system, since it does not require the physical device to be present and can be
completely performed in a controlled environment. Sadly, emulation of unknown
devices is not easy because an embedded firmware expects specific hardware
to be fully present, such as peripherals or memory layouts. Previous attempts
were made at improving emulation of firmware images by forwarding I/O to
the hardware [203], which applies to many kind of embedded systems, even the
monolithic firmware images. In a different approach [141], Linux based embedded
systems are emulated with a custom kernel that forwards ioctl requests to the

Ph.D. Thesis — Andrei Costin

5.1. INTRODUCTION 59

Results
Collection

and
Analysis

Dynamic Analysis

QEMU/Chroot Analysis Tools

Feedback for Improving Analysis

 File
Systems

Preparation

 Firmware
Selection

Unpacked
Firmware
Sources

Results
Exploitation

Static Analysis

Doc Root Analysis

Figure 5.1: Overview of the analysis framework.

embedded device that runs the original kernel. Those techniques achieve a rather
good emulation, but require the presence of the original device, which does not
scale. We observe that, in Linux based embedded systems, the interaction with
the hardware is usually performed from the kernel. Moreover, web interfaces
often do not interact with the hardware or this interaction is indirect.

In this chapter, we propose a partial emulation of firmware images by replacing
their kernel with a stock kernel (targeting the same architecture) and emulate
the whole userland of the firmware using a hypervisor, such as QEMU [106]. We
chroot the unpacked firmware and start the init program, the init scripts or,
sometimes, directly the web server. Once (and if) the web server is up and oper-
ational, we use dynamic analysis tools to discover vulnerabilities in the system.
This approach has the advantage to be rather automated and generic, however,
a complete emulation is very slow and some firmware images and tools do not
run properly.

5.1.1 Overview of our Approach

In order to perform scalable security testing of embedded web interfaces we
developed a framework for automated analysis (Figure 5.1). We started our ana-
lysis with a dataset of 1925 unpacked firmware images 1 that contain embedded
web interfaces. Then, for each unpacked firmware we identify any potential web
document root present inside the firmware. At this point we make a pass with
static analysis tools on the web document root. Next, we emulate the firmware
images. Once (and if) the web server is up and operational, the dynamic analysis
phase is performed. Finally, we analyze the results and perform manual analysis
wherever needed.

1 We focused mainly on Linux-based firmware images. Linux-based firmware images are
in general well structured and documented, therefore they are easier to unpack, analyse and
emulate. However, our approach can be easily extended in the future to other types of firmware,
including monolithic ones.

Large Scale Security Analysis of Embedded Devices’ Firmware

60
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

5.1.2 Contributions

In summary, we make the following main contributions:

• We perform the first large scale, comprehensive, security study on em-
bedded web interfaces, leveraging multiple techniques and state of the art
tools.
• We shed light on a previously unstudied part of firmware and discover

serious vulnerabilities in a wide spectrum of embedded devices.
• We propose an efficient methodology and we develop a scalable framework

to address detection of web vulnerabilities in embedded devices.
• We enable a testbed for further advanced security research on firmware of

embedded systems.

5.2 Exploring Techniques to Analyze Web Inter-
faces of Firmware Images

We evaluated several options for performing static and dynamic analysis on web
interfaces of embedded systems. Indeed, many solutions are possible, but not
all fit our needs. We summarize here the different possibilities and motivate our
choices.

5.2.1 Static Analysis

There are many practical advantages to static analysis tools; they are often auto-
mated and do not require setting up too complex test environments. In general,
they only need the source code (or application) to be provided to generate an
analysis report. It is also relatively easy to plug new static analysis tools for
increased coverage or wider support of file formats and source code languages.
Finally, as result of all the above, such tools are scalable and are easy to auto-
mate.

However, static analysis techniques have well understood limitations. On the one
hand, they cannot find all the vulnerabilities, which results in a number of missed
vulnerabilities, i.e., False Negatives (FN). On the other hand, they also alert
on non-vulnerabilities, i.e., False Positives (FP). When a static analysis tool is
used to improve or guide a manual analysis the false positives can be discarded
quickly. However, when performing a large scale study a too high FP rate is very
problematic as manually discarding them becomes infeasible.

Additionally, the firmware within embedded devices use technologies for which
security static analysis tools often do not exist (e.g., perl, lua, haserl,
binary CGIs). On the contrary, there exist a number of static analysis tools

Ph.D. Thesis — Andrei Costin

5.2. EXPLORING TECHNIQUES TO ANALYZE WEB INTERFACES OF
FIRMWARE IMAGES 61

for PHP [85, 139], mainly due to the fact that PHP is the most popular server-
side programming language for the web [2]. Unfortunately, it appears from our
dataset that only a portion of embedded web interfaces actually use PHP in their
server-side. This is not really a surprise as PHP is not designed for embedded
systems. We nevertheless examined these cases, by using RIPS [85] and provide
results of this analysis in Section 5.5.2.

Finally, binary static analysis can be applied to binary CGIs to find vulnerabilities
such as buffer overflows, (remote) code executions, command injections. One
possible solution is to use tools like Firmalice [184] or WEASEL [181]. However,
it is challenging to find static binary analysis tools that are completely automated
and which cover the variety of architectures present in our dataset (arm, armel,
mips, mipsel, powerpc, cris, m68k, blackfin).

Static analysis tools. There exist many static analysis tools [3, 4]. For in-
stance, RIPS is a state of the art static analysis tool for PHP source code [5]. It
implements a context-sensitive, intra- and inter- procedural data flow analysis.
It uses tainting and basic block, function, and file summaries for and efficient,
backwards-directed data flow analysis to discover a wide range of web vulnera-
bility categories. We found it to provide very good results.

There are several other tools that provide static analysis. Unfortunately, we ex-
cluded them from our static analysis infrastructure for various reasons. Some
tools like RATS [6], VisualCodeGrepper or Yasca [7] support some web script-
ing languages, but are performing only rough analysis of the source code warning
about usage of sensitive APIs such as system() or exec(). Those tools do not
perform semantic or Abstract Syntax Tree (AST) analysis, and hence they yield
a lot of false positives and are not suitable for a large scale analysis. Other tools,
such as Pixy , are not available nor maintained. Finally, there are many commer-
cial static analyzers, however, it was difficult to get access to them, in particular
due to their high cost. We therefore did not experiment with any of them. We
expect that such tools would be easy to integrate in our framework; while they
would not fundamentally change our approach they would certainly improve our
results.

5.2.2 Dynamic Analysis

Dynamic analysis—an analysis that relies on testing an application by running
it—has many benefits. First, dynamic analysis of web interfaces is mostly inde-
pendent from the server-side technology used. For instance, the same tool can
test interfaces that are implemented in PHP, native CGIs or custom web script-
ing engines. This allows to greatly improve the coverage of tests and to examine
interfaces with the same tools independently of their technology. Second, it can
be used to confirm vulnerabilities found in the static analysis phase. There are

Large Scale Security Analysis of Embedded Devices’ Firmware

62
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

many dynamic analysis tools for security testing of web applications. Bau et.
al. [48] performed a detailed evaluation of such web vulnerability testing tools.

One big advantage of dynamic analysis tools is that they have more accurate
analysis results and perform a better validation of the reported vulnerabilities.
They identify problems in a target environment and can do so even when there is
no access to the source code. Unfortunately, dynamic analysis tools often require
a lot of effort to setup (e.g., environment setup), and sometimes also require
customization such as adding new vulnerability modules for scanning and testing.

For our framework we selected tools that are open source so that we can easily
adapt and integrate them in our framework and fix their defects when needed.
Based on this we used Arachni [8], Zed Attack Proxy (ZAP) [9] and w3af [10].
Arachni is an open source framework, written in Ruby, which is designed for pen-
etration testing of web applications. We found it to provide very good results.
ZAP is a Java-based integrated penetration testing tool for web applications
from OWASP. It aims to be easy to use by a broad audience. We found it to
provide mixed level of results. w3af , or Web Application Attack and Audit Frame-
work, is a Python framework designed to help developers secure web applications
by finding and exploiting a broad range of web application vulnerabilities. We
found it to provide results that are not as good as those of ZAP and Arachni .

5.2.3 Limitations of Analysis Tools

Inherent limitations. Tools in general are designed for very specific purpose,
with certain assumptions in mind. One example is that there are high number of
FPs and FNs that are the direct consequence of the vulnerability finding tools
we rely on. Another example is the implementation of OS command injections
in most of the tools. Most of these vulnerabilities are often missed because
such flaws are often hard to discover via automated testing [11]. Tools usually
try to inject commands such as ping <ip> or cat /etc/passwd. These tests
implicitly assume that the networking is functional and that the firmware has
the ping utility or that the output from commands are not filtered by the web
application. To overcome these limitations we take advantage of our “white box”
approach (see Section 5.3.4).

Defects in analysis tools. The development effort of our framework went
much beyond plugging the right tool in the right place. Indeed, we had to extend
many tools and we encountered many defects in them. Those issues were severely
impacting the success rate of the vulnerability discovery. We were able to fix many
of them but this required a significant engineering effort. Fixing bugs proved
necessary to obtain good results. While there are still defects to be fixed, this
shows that better web application analysis tools are still needed, in particular for
embedded devices.

Ph.D. Thesis — Andrei Costin

5.2. EXPLORING TECHNIQUES TO ANALYZE WEB INTERFACES OF
FIRMWARE IMAGES 63

Figure 5.2: Various possible options to launch a web interface: from perfect emulation
of a hardware platform to hosting the web interface. Arrows are indicative of a general
trend, actual evolution of the properties may not be linear.

5.2.4 Running Web Interfaces

Dynamic analysis of web applications require a function web interface. There are
different ways to launch the web interface that is present in the firmware of an
embedded system, however, none of them are perfect. Some methods are very
accurate but infeasible in our setup, such as emulating the firmware in a perfect
emulator (which is not available). Other methods are much less accurate, like
extracting the web application files and serving them from a generic web server.
Therefore, we evaluated different possibilities and describe their advantages and
drawbacks (summarized in Figure 5.2).

Hosting Web Interfaces Non-Natively

A straightforward way to launch a web interface from a firmware is to extract
it (i.e., the document root) and launch it under a web server on an analysis
environment, without trying to emulate the original web server and firmware.
For this, we need to identify the web server used by the firmware (e.g., boa,
minihttpd, thttpd, lighttpd, apache) and to locate its original configura-
tion. Then the web application is located (described in Section 5.3.2), extracted
and “transplanted” to the hosting environment . The hosting environment is set
up using the same web server (or a very similar version) and the configuration
files extracted from the firmware. The main advantage of this technique is that
it does not require emulation, which dramatically simplifies the deployment and
thus, it is easy to automate.

However, this approach has many limitations. For example, it is not possible to
handle platform dependent binaries and CGIs. We analyzed the document roots
within the 1580 firmware candidates for emulation and found that 57% out of
those were using binary CGIs or were in some way bound to the platform2. In

2This is a lower bound as we did not count web scripts calling local system utilities, e.g.,

Large Scale Security Analysis of Embedded Devices’ Firmware

64
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

addition to this, the firmware images often use either customized web servers, or
versions which are not available on normal systems (e.g., uClinux has a custom
version of the common boa web server). Those often support options which are
nontrivial to reproduce under a normal system without profoundly modifying the
web server used. As a consequence, the chances of properly emulating the web
interfaces using this technique is very low and after careful evaluation on a few
firmware samples we decided not to use it in our framework.

Firmware and Web Interface Emulation

To emulate a firmware (or part of it) we need to detect the CPU architecture it
is intended to execute on. Also, depending on the chosen emulation method, a
generic kernel and a file system for that architecture could be required. Detecting
the CPU architecture of each root filesystem is not trivial. For example, some
firmware packages contain files for various architectures (e.g., ARM and MIPS).
Sometimes, vendors package two different firmware blobs into a single firmware
update package. The firmware installer then picks the right architecture during
the upgrade based on the detected hardware. In such cases, we try to emulate this
filesystem with each detected architecture. We detect the architecture of each
executable in a firmware using ELF headers or statistical opcode distribution
for raw binaries. We then decide on the architecture by counting the number of
architecture specific binaries it contains. Once we detected the right architecture,
we use the QEMU emulator for that particular architecture. There are different
possibilities for emulating the firmware images, which we now compare.

Perfect emulation. Ideally we would have a complete firmware (including the
bootloader, kernel,. . .) and a QEMU setup that perfectly emulates the hardware
for which the firmware was designed. However, QEMU only emulates few plat-
forms for each CPU architecture. Moreover, perfectly emulating unknown hard-
ware is impossible, especially considering that hardware devices can be arbitrarily
complex. In addition to this, hardware in embedded devices is often custom and
its documentation is in general not available. It is therefore infeasible to adapt
the emulator, and even less to apply this at a large scale.

Original kernel and original filesystem on a generic emulator. Reusing
the kernel of the firmware could lead to a quite accurate emulation, in particular
because it may export interfaces for some custom devices that are needed to
properly emulate the system. Unfortunately, kernels for embedded systems are
often customized and hence, do not support a wide range of peripherals. There-
fore, using the original kernel is unlikely work very well. Furthermore, the original

using the system() call.

Ph.D. Thesis — Andrei Costin

5.2. EXPLORING TECHNIQUES TO ANALYZE WEB INTERFACES OF
FIRMWARE IMAGES 65

kernel is often missing from the firmware image under analysis. For instance, we
found only 107 kernels out of 1925 original firmware images. Consequently, for
most of the embedded systems, the kernels have to be extracted from the device
(e.g., via JTAG, flash dumping). We therefore did not try to use the original
kernels.

Generic kernel and original filesystem on a generic emulator. We can eas-
ily find or build a complete generic kernel for the architecture of a device3. Such
a kernel will then boot properly on the generic emulator. The lack of the origi-
nal kernel can reduce the accuracy of the emulation. However, we estimate this
limitation does not affect significantly the web interface emulation and hence,
the coverage of the dynamic analysis. Another drawback is the raw usage of
the original firmware filesystem. As these firmware images are built differently
by different vendors for varying devices, we cannot fully rely on the presence
of required utilities, e.g., SSH, SCP, netstat. Without such basic tools, it be-
comes problematic to do automated management of the emulated hosts. We
have evaluated this technique on a few selected firmware instances. Though we
could build and install generic support tools, there are more elegant solutions
which we are going to present.

Generic kernel and a generic filesystem, chrooting the firmware to ana-
lyze. We first boot a generic Debian Linux system and generic kernel inside the
QEMU emulator. Once this generic environment is up and operational, we copy
the root filesystem of the firmware into the emulated environment. We then ch-
root to the firmware’s filesystem and execute (inside the chroot) the shell (e.g.,
/bin/sh) or the init binary (e.g., /sbin/init). Finally, in the chroot environ-
ment we start the web server’s binary along with the web interface document
root and web configuration.

The main advantage of this approach is that it can provide almost complete em-
ulation of the web interfaces of the embedded devices and is scalable. There are
few drawbacks of this approach. First, emulating the system is not very fast; em-
ulation is one order of magnitude slower than native execution. Additionally, the
emulator environment setup and cleanup introduces a significant overhead. This
approach also limits the number of platforms to those supported by the Debian
Ports project. Luckily, the Debian project supports many common embedded
architectures (e.g., arm, mips, powerpc).

Unfortunately, with this approach we cannot fully emulate the peripherals and
specific kernel modules of the embedded devices. However, few firmware images
and a limited part of embedded web interfaces actually interact directly with the

3We used the pre-compiled Debian Squeeze kernels and systems from https://people.
debian.org/~aurel32/qemu/

Large Scale Security Analysis of Embedded Devices’ Firmware

https://people.debian.org/~aurel32/qemu/
https://people.debian.org/~aurel32/qemu/

66
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

peripherals. One such example is a web page that performs a firmware upgrade
which in turn requires access to flash or NVRAM memory peripherals.

In summary, this is the approach that we found to be most scalable and that
provided the best results in starting the web interfaces for analysis. At the same
time, this approach is a balanced trade-off between the emulation accuracy,
complexity and speed (see Figure 5.2).

Architectural chroot. One way to improve the performance and emulation
management aspects of our framework is by using architectural chroot [12], or
QEMU static chroot . This technique uses chroot to emulate an environment
for architectures other than the architecture of the running host itself. This
basically relies on the Linux kernel’s ability to call an interpreter to execute
an ELF executable for a foreign architecture. Registering the userland QEMU
as an interpreter allows to execute arm Linux ELF executables on an x86_64
Linux system. Our approach is to do userland emulation only with architectural
root (Figure 5.4). We have successfully tested this technique on a few firmware
instances. This approach is fast and easy to manage (compared to the system
QEMU emulation), however, it is quite fragile and requires significant additional
work to be more reliable. In addition, while this approach has the advantage
of improving emulation speed, it is unlikely to improve the number of firmware
packages we can emulate in the end. Therefore, we did not use this technique in
our experiments. We plan to explore this direction in more details in our future
work.

5.3 Analysis Framework Details

In order to perform a large scale and automatic analysis of firmware images we
designed a framework to process and analyze them (Figure 5.1). First, we ob-
tain a set of unpacked firmware images, analyze and filter them (Section 5.3.1).
Then we perform some pre-processing of the selected unpacked files. For in-
stance, some firmware images are incompletely unpacked or the location of the
document root is not obvious (Section 5.3.2). We then perform the static and
dynamic analyses (Section 5.3.3). Finally, we collect and analyze the reported
vulnerabilities (Section 5.3.4), and exploit these results (Section 5.3.5).

5.3.1 Firmware Selection

The firmware selection works as follows. First, we select the firmware images
that are successfully unpacked and are Linux-based systems which we can natively
emulate and chroot to (see Section 5.3.2). Second, we choose firmware instances
that clearly contain web server binaries (e.g., httpd, lighttpd) and typical

Ph.D. Thesis — Andrei Costin

5.3. ANALYSIS FRAMEWORK DETAILS 67

configuration files (e.g., lighttpd.conf, boa.conf). In addition to these, we
select firmware images that include server side or client side code related to web
interfaces (e.g., HTML, JavaScript, PHP, Perl). Our dataset is detailed in
Section 5.4.

5.3.2 Filesystem Preparation

To emulate a firmware the emulator requires its root filesystem. In the best case
the unpacked firmware directly contains the root filesystem. However, in many
cases the firmware images are packed in different and complex ways. For exam-
ple, a firmware can contain two root filesystems, one for the upgrade and one for
the factory restore, or it can be packed in multiple layers of archives along with
other resources. For these reasons, we first need to detect the potential candi-
dates for root filesystems. We achieve this by searching for key directories (e.g.,
/bin/, /sbin/, /etc/, /usr/) and for key files (e.g., /init, /linuxrc,
/bin/busybox, /bin/sh, /bin/bash, /bin/dash). Once we detect such key
files and folders relative to a directory within the unpacked firmware, we select
that particular directory as the root filesystem point. There are also cases when
it is hard or impossible to detect the root filesystem. A possible reason for this is
that some firmware updates are just partial and do not provide a complete sys-
tem. For each detected root filesystem, we extract it from the unpacked directory
tree and pack it as a standalone root filesystem ready for emulation.

Unpacking firmware images can produce “broken” root filesystems and thus, we
need to fix them. In addition to this, sometimes the initialization scripts do not
explicitly start (or fail to start) the webserver. Therefore, in such cases in order to
start the web server within the root filesystem, we need to detect the web server
type, its configuration, and the document root. For these reasons, we have to
use heuristics on the candidate root filesystems and apply transformations before
we can use them for emulation and analysis.

Filesystem Sanitization

Unpacking firmware packages is not perfect. First, unpacking tools sometimes
have defects. Second, some firmware images have to be unpacked using an
imperfect “brute force” approach (see Chapter 4). Finally, some vendors cus-
tomize archives or filesystem formats. For instance, we observed a case in which
the symlinks are incorrectly unpacked because they are represented as text files
that contain the target of the link (e.g., the symbolic link /usr/bin/boa ->
/bin/busybox is represented with a text file named /usr/bin/boa that con-
tains the string /bin/busybox). All these lead to an incorrect unpacking, thus
the unpacked firmware image differ from the filesystem representation intended
to be on the device. This reduces the chances of successful emulation and there-
fore we need a sanitization phase.

Large Scale Security Analysis of Embedded Devices’ Firmware

68
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

This sanitization phase is performed by scripts that traverse unpacked firmware
filesystems and fix such problems. Sometimes, there are multiple ways to fix a
single unpacked firmware. This results in multiple root filesystems to be submit-
ted for emulation increasing our chances of proper emulation of a given firmware.
Implementing these heuristics added a 13% processing overhead. At the same
time, it allowed us to increase the successful emulations by 2% and the successful
web server launches by 11%.

Web Server Configuration

We inspect the firmware files and locate the web server binaries (httpd, boa,
lighttpd, thttpd, minihttpd, webs, goahead). We also locate their related
configuration files (e.g., boa.conf, lighttpd.conf). The path of the web server
and its configuration file is sufficient to start the web server using a command
such as /bin/boa -f /etc/boa/boa.conf (a real example from our dataset).
Additionally, we extract important settings from the configuration files (e.g., the
document root).

Web Server Parameters

Sometimes, we miss important parameters which are required to properly start
the web server, such as the document root path or the CGI path. Often this
happens because of a missing configuration file (e.g., partial firmware update) or
because the parameters are supplied via the command line from a script which
is not available. In these cases, we experiment with all the potential document
roots of the firmware. To find a potential document root (within the root filesys-
tem) we first search for index files (e.g., index.html, default.html) with
possible file extensions (HTML, SHTML, PHP, ASP, CGI). Then, we build a set
of longest common prefix directories of these files. This can result in multiple
document root directories, for example a second document root can be found
in a recovery partition. Once we discover the document roots, we prepare the
possible commands to start the web server. By using this approach, we increase
the chances to succeed in starting a working web server.

Web Server Sitemap

We also build an optimized site map for each such document root directory. The
site maps are very useful to be provided as an input to the dynamic analysis
tools. Indeed, one of the well known limitations of the dynamic analysis tools
is that they need to crawl the web application to discover the pages to check,
which can be inefficient and reduces the coverage [95]. Providing the site map
mostly solve this problem. Thus, we instruct the tools to restrict their analysis to

Ph.D. Thesis — Andrei Costin

5.3. ANALYSIS FRAMEWORK DETAILS 69

Ubuntu 14 VM

Arachni

ZAP

w3af

Tcpdump

Linux X86_64 Kernel

QEMU (Debian Squeeze armel)

S
cr

ip
tin

g
F

ra
m

ew
or

k

Debian Squeeze armel Linux 2.6 Kernel

D
eb

ia
n

 S
qu

ee
ze

 U
se

rs
pa

ce

Init

rc scripts

File System

Chroot

Other services

...

Web Server

HTML
PHP

Perl

Shell

Utilities

Native CGI

Chrooted Firmware (userspace)

Analyzed components

Figure 5.3: Overview of one analysis environment for Linux armel with a 2.6 kernel.

the supplied site map and we do this for multiple reasons. First, it significantly
reduces the time required to complete the dynamic analysis. No time is wasted
to analyze uninteresting files, such as image files, or to crawl the web application.
Second, it reduces the chances for the web interface or the emulator to crash by
limiting the resource load, e.g., number of requested files. Third, it increases the
chances that the files which were reported as vulnerable by static analysis will
also undergo dynamic analysis.

5.3.3 Analysis Phase

Once the filesystems are prepared, we emulate each of them in an analysis virtual
machine where dynamic testing is performed (Figure 5.3 and Section 5.2.2). We
also submit the document roots to the static analyzers (Section 5.2.1). This
phase is completely automated and scalable as each of the firmware images can
be analyzed independently.

5.3.4 Results Collection and Analysis

After dynamic and static analysis phases are completed, we obtain the analysis
reports from the security analysis tools in XML format. We also collect several
logs that can help us make further analysis as well as improve our framework.
These are typically required to debug the analysis tools or our emulation envi-
ronment. For instance, we collect SSH communication logs with the emulator
host, changes in the firmware filesystem, and capture the network traffic of the
interaction with the web interface.

Large Scale Security Analysis of Embedded Devices’ Firmware

70
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

Ubuntu 14 VM

Arachni

ZAP

w3af

Tcpdump

Linux X86_64 Kernel

Chrooted Firmware (userspace)

S
cr

ip
tin

g
F

ra
m

ew
or

k

QEMU armel (User mode Emulation)

Chrooted File System

Init

rc scripts

Web Server

Other services

armel
bin

format

...

"Architectural"
Chroot

Bin format
registration

Linux system callsExcution

Figure 5.4: Architectural chroot analysis setup.

File systems changes. We capture a snapshot of the emulated filesystem at
several different points in time. We do this (i) before starting the emulation, (ii)
after emulation is started, and (iii) after dynamic analysis is completed. Then,
we perform a filesystem diff among these snapshots. Interesting changes are
included in both log files and new files. Log files are interesting to collect in case
a manual investigation is needed. New files can be the consequence of a OS
command injection or more generally of a remote code execution (RCE) vul-
nerability triggered during the dynamic analysis phase. This often occurs when
dynamic testing tools try to inject commands (e.g., touch <filename>). Some-
times, the command injection can be successful but is not detected by the analysis
tools. However, it is easy to detect such cases with the filesystem diff.

Capturing communications. Performing dynamic analysis involves a lot of
input and output data between the (emulated) device and the dynamic analysis
tool. It makes sense to capture both the raw input and the output communi-
cation. In case problems arise during testing, this capture can add an increased
trace of accountability. However, there are few more reasons to capture this raw
communication.

A successful OS command injection can go undetected by the tools. Also, such
a vulnerability can be difficult to verify, even in a “white box” testing approach
(Section 5.2.3). After the testing it can be discovered that a command injection
was in fact successfully triggered and accomplished. In such a case, it is needed to
rewind through all HTTP transactions to find the input triggering the particular
vulnerability and we can then look for incriminating inputs and parameters (e.g.,
a touch command).

Ph.D. Thesis — Andrei Costin

5.4. DATASET 71

The test tools often behave like fuzzers as they try many malformed inputs one
after the other. Because of this, a detected vulnerability may not be a direct re-
sult of the last input. For example, it can be a result of the combination of several
previous inputs. It is therefore important to recover all these previous inputs in
order to reproduce the vulnerability. We use tcpdump to capture the commu-
nication, which we store in a the dump file. Then we use justniffer [13] to
analyze the HTTP streams and to recover the exact URLs and their parameters.

5.3.5 Results Exploitation

After collecting all the details of analysis phase, we perform several steps to
exploit these results. First, we validate the high impact vulnerabilities by hand and
try to create a proof-of-concept exploit. This could be automated in the future, as
this was done for other fields of vulnerability research [42]. Unfortunately, none
of the tools we currently use provide such a functionality. Additionally, from
the static analysis reports we manually select the high impact vulnerabilities
(e.g., command injection, XSS) and the files they impact. We then use these to
explicitly drive the dynamic analysis tools and aim mainly at two things: (i) get
the dynamic analysis tools to find the vulnerabilities they missed (if they did)
and (ii) find the bugs or limitations that prevented the dynamic tools to discover
the vulnerability in the first place. In addition to this, sometimes we do selective
manual analysis on source code files of the embedded web interface. For example,
a source code file (e.g., PHP) could be reported by the dynamic or static analysis
tools to have a large number of high-impact vulnerabilities. In such cases, we
manually check the source code files to ensure those reports are not false positives
or bugs in the tools, and also we try to find other vulnerabilities during manual
inspection. Even though manual analysis does not scale, it can help uncover
additional nontrivial vulnerabilities (see Table 5.7). Finally, we summarize all our
findings in vulnerability reports to be submitted as CVEs.

5.4 Dataset

We started this study with an initial dataset of unpacked firmware images that
we previously discussed in Chapter 4. From this initial dataset, we selected firm-
ware images based on several properties. First, we chose the firmware instances
which were successfully unpacked and which were Linux-based embedded sys-
tems. These were the systems which were likely the simpler to natively emu-
late and chroot. Then, we selected firmware instances that clearly contained a
web server binary (e.g., httpd, lighttpd) and typical configuration files (e.g.,
lighttpd.conf, boa.conf). In addition to these, we also chose firmware im-
ages that included server-side or client-side code correlated to web interfaces
(e.g., HTML, JavaScript, PHP).

Large Scale Security Analysis of Embedded Devices’ Firmware

72
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

Table 5.1: Firmware counts at various phases of the dynamic analysis of embedded
web interfaces.

Dataset phase # of FWs (unique) # of root FS

Original firmware 1925 –
Web server emulation
candidates 1580 1754

Improved by heuristics 1580 1982
Emulation OK 488 –
Web server OK 246 –

Table 5.2: Distribution of architectures and their emulation success rates.

Arch. Original FWs Emulation OK Web server OK

arm 32% 53% 55%
mips 18% 21% 17%
mipsel 17% 26% 28%
bflt 5% no support yet no support yet
cris 4% no support yet no support yet
powerpc 3% no support yet no support yet
others 21% no support yet no support yet

Total 1925 488 246

Challenges and Limitations Inevitably, our dataset and the heuristics we
apply lead to a bias, as explained in Chapter 4. First, it almost only contains
firmware images that are publicly available online. Second, Linux based devices
only account for a portion of all embedded systems. Finally, there are firmware
images running as monolithic software or embedding web servers we currently do
not detect or support. We are aware of this bias and the results herein should be
interpreted without generalizing them to all embedded systems. In essence, these
choices were needed to perform this study and it will be an interesting future
work to extend the study to more diverse firmware images. However, adapting
our framework and techniques to embedded devices that have their firmware
based on systems with a clear separation of bootloader, kernel space, user space,
and filesystems (e.g., VxWorks, WinCE, QNX) should be relatively easy.

5.5 Results and Case Studies

5.5.1 Overview of Discovered Vulnerabilities

Our automated system performed both static and dynamic analysis of embed-
ded web interfaces inside 1925 firmware images. We discovered at least 244 high
impact vulnerabilities, and still have to analyze and confirm static analysis re-

Ph.D. Thesis — Andrei Costin

5.5. RESULTS AND CASE STUDIES 73

Table 5.3: Distribution of web servers types among the 246 instances which successfully
started a web server.

Web server % among started web servers

minihttpd 37%
lighttpd 30%
boa 4%
thttpd 3%
others 26%

Table 5.4: Distribution of web technologies within the 246 instances which started a
web server.

Web interface contains % of started web servers

HTML 98%
CGI 57%
PHP 2%
perl 3%
POSIX shell 11%

ports of some more 9046 possible vulnerabilities, overall affecting 185 firmware
packages from 13 vendors.

5.5.2 Static Analysis Vulnerabilities

PHP is one of the most used server-side web programming languages [96]. Over
the past years, many researchers focused on investigating vulnerabilities in PHP
applications and creating static analysis tools [85,139]. However, to the best of
our knowledge, we are the first to study the prevalence of PHP in embedded
web interfaces and their security. We extracted and analyzed the PHP source
code within our dataset. RIPS reported 145 unique firmware packages to con-
tain at least one vulnerability and a total of 9046 reported issues. The detailed
breakdown is presented in Table 5.5. We observe that cross-site scripting and
file manipulation constitute the majority of the discovered vulnerabilities, while
command execution (one of the most serious vulnerability class) ranks third.

5.5.3 Dynamic Analysis Vulnerabilities

Our framework was able to perform security testing on 246 systems, and the
general results are presented in Table 5.7. In particular, we discovered 21 firm-
ware packages which are prone to command injection. While this seems a small
number of vulnerabilities, their impact is significant as there is potentially a very
high number of devices running these firmware images, and users affected. These

Large Scale Security Analysis of Embedded Devices’ Firmware

74
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

Table 5.5: Distribution of PHP vulnerabilities reported by RIPS static analysis. NOTE:
For TP, FP, FN rates of each vulnerability type see Table Evaluation results for popular
real-world applications in [85].

Vulnerability type # of issues # of affected FWs

Cross-site scripting 5000 143
File manipulation 1129 98
Command execution 938 41
File inclusion 513 40
File disclosure 461 87
SQL injection 442 10
Possible flow control 171 56
Code execution 141 21
HTTP response splitting 127 27
Unserialize 119 15
POP gadgets 4 4
HTTP header injection 1 1

Total 9046 145 (unique)

serious vulnerabilities are affecting devices such as SOHO routers, CCTV cam-
eras, smaller WiFi devices (e.g., SD-cards). Correlating these firmware images to
populations of online devices is left for future work. In Chapter 4 we have shown
this to be possible, for example, using Shodan [155] or ZMap [102].

Additionally, we found 32 firmware packages affected by XSS and 37 vulnerable
to CSRF. Even though XSS and CSRF vulnerabilities are usually not considered
to be critical vulnerabilities, they can have a high impact. For example, Bencsáth
et al. [52] used a Cross-Channel Scripting (XCS) [57] attack to completely com-
promise an embedded device only using XSS and CSRF vulnerabilities. Other
vulnerabilities are not as severe as the ones we just discussed and can be found
in Table 5.6. Overall, we found vulnerabilities in 24% of the firmware images
tested, which demonstrates the viability of our approach.

5.5.4 Presence of HTTPS

We also explored how often embedded devices web interfaces have HTTPS sup-
port. In our dataset 363 out of 1925 original firmware packages had at least one
HTTPS certificate inside. We did not try to detect firmware instances which
originally come without any HTTPS certificates and which actually generate
the HTTPS certificates during a subsequent boot. This provides a lower bound
estimate of firmware images that provide a web server with HTTPS support.
Additionally, 60 firmware instances out of the 246 which started an HTTP web
server, also started an HTTPS web server. We also expect this number to be
lower than the reality as an HTTPS web server might not start for multiple
reasons.

Ph.D. Thesis — Andrei Costin

5.5. RESULTS AND CASE STUDIES 75

Table 5.6: Distribution of dynamic analysis vulnerabilities. NOTE: The count of vul-
nerabilities followed by “†” is not used elsewhere in this chapter when we mention a
total number of vulnerabilities found. This is because they are known for very high false
positive rates and low severity.

Vulnerability type # of issues # of affected FWs

Command execution 51 21
Cross-site scripting 90 32
CSRF 84 37

Sub-total HIGH impact 225 45 (unique)

Cookies w/o HttpOnly † 9 9
No X-Content-Type-Options † 2938 23
No X-Frame-Options † 2893 23
Backup files † 2 1
Application error info † 1 1

Sub-total low impact † 5843 23 (unique)

Total 6068 58 (unique)

Table 5.7: Distribution of vulnerabilities found by manual analysis (Section 5.3.5).
NOTE: firmware images relate to similar products of one particular vendor.

Vulnerability type # of affected FWs

Privilege escalation (full admin) 19
Unauthorized configuration download 19
Unencrypted configuration storage 19

Total HIGH impact 19 (unique)

5.5.5 Other Network Services

Embedded devices usually have a very specific purpose, for example to provide
ADSL routing, to connect VoIP calls or to stream CCTV surveillance video.
While our focus was on security of the web interfaces, which are often used for
administrative purposes, we found interesting to report on the network services
that are launched by those devices during the dynamic analysis. Indeed, those
additional network services might be vulnerable on their own.

Examples of such services include TFTP [18], TR-069 [21], RTSP [20], De-
bug [19]. To gather such information, a straightforward method is to use the
NMAP scanner [14] to scan the ports of the emulated firmware, however, this
is not a very good option. On the one hand, performing an exhaustive TCP and
UDP port scan was very slow, while on the other hand, the rapid scan option
was missing non-standard network services and ports opened by emulated firm-
ware packages. However, as our methodology uses a “white box” approach to

Large Scale Security Analysis of Embedded Devices’ Firmware

76
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

emulate a firmware (which allows us to see the emulated device from within)
we can directly see the open sockets using the netstat tool inside the QEMU
machine that emulates the device. Inevitably, the hosting system runs a minimal
set of network services in order to be usable (e.g., sshd, rpcd). To get a list
of network services started by the emulated firmware, we took one snapshot of
the netstat output before we start emulating the device, and one snapshot af-
ter all the initialization scripts and web server launch completed. This approach
provided us with a very clear and precise picture of the tuples—[port-type,
port-number, PID/program]—which are opened by the emulated device. A
detailed breakdown of network services is presented in Table 5.8.

Table 5.8: Distribution of network services opened by 207 firmware instances out of
488 successfully emulated ones. The last entry summarizes the 16 unusual port numbers
opened by services such web servers.

Port type Port number Service name # of FWs

TCP 554 RTSP 91
TCP 555 RTSP 84
TCP 23 Telnet 60
TCP 53 DNS 23
TCP 22 SSH 15
TCP Others Others 58

Total 207 (unique)

5.6 Discussion

5.6.1 Emulation Technique’s Limitations

Although our approach is able to discover vulnerabilities in embedded web ser-
vices that run inside an emulated environment, setting up this environment is
sometimes difficult. In the following, we discuss several limitations we encoun-
tered and outline how they could be handled in the future.

Forced Emulation

Even though most of the firmware instances in our database are for Linux-
based devices, they are quite heterogeneous and their binaries vary. Examples
include init programs that have different set of command parameters or strictly
requiring to run as PID 0, which is not the case in a chrooted environment. In
theory, there should be a simple and uniform way to start the firmware, but this
is not the case in practice as devices are very heterogeneous. In addition to this
unless we have access to the bootloader of each individual device, there is no

Ph.D. Thesis — Andrei Costin

5.6. DISCUSSION 77

reliable way to reproduce the boot sequence. Obtaining and reverse-engineering
the boot-loaders themselves is not trivial because they are often not embedded in
the firmware image. This usually requires access to the device, usage of physical
memory dumping techniques, and manual reverse-engineering, which is outside
the scope of this work. We emulate firmware images by forcefully invoking its
default initialization scripts, (e.g., /etc/init, /etc/rc), however, sometimes,
these scripts do not exist or fail to execute correctly leading to an incomplete
system configuration. For instance, it may fail to mount the /etc_ro partition
at the /etc mount point, and then, the web server is missing some required files
(e.g., /etc/passwd).

Emulated Web Server Environment

Even if the basic emulation was successful, other problems with the emulated
web server environment are common. For example, for many requests an emu-
lated web interface can return the HTTP response codes 500 Internal Server
Error or 404 Not Found. We manually inspected many of such cases to find the
root cause. The HTTP error code 500 was mainly due to some scripts or binaries
were either missing from the root filesystem or did not have proper permissions.
The HTTP error code 404 was often due to the wrong web server configuration
file being loaded. Loading a wrong configuration file made the document root to
point to a wrong directory and hence the HTTP error code 404. To overcome
this, we try to emulate the web interface of a firmware using all combinations of
the configuration files and document roots we find in this firmware.

Imperfect Emulation

The ability to emulate embedded software in QEMU is incredibly valuable, but
comes at a price. One big drawback is that some very common peripheral devices
are missing in the emulated environments. One of the most common emulation
failure is related to the lack of non volatile memories (e.g., NVRAM). Such
memories are used by embedded devices to store boot and configuration infor-
mation. The drawback is confirmed by researchers emulating individual firmware
images [84,118].

There are several approaches to overcome such limitations. One is to have an uni-
versal or on-the-fly NVRAM emulator plugged into the QEMU hypervisor. For ex-
ample, it can be instrumented at kernel-level or implemented using Avatar [203].
Another approach is to intercept calls to the commonly used libnvram func-
tions (such as nvram_get and nvram_set) and return fake data. This technique
is described in detail elsewhere [84, 118] and we will plan to integrate it in our
future work. However, we expect that in many cases this will still be problematic.
The NVRAM is used as non volatile storage, e.g., for settings. Providing a fake

Large Scale Security Analysis of Embedded Devices’ Firmware

78
5. DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON

EMBEDDED WEB INTERFACES

NVRAM device with incorrect data will not solve all problems and probably will
introduce new ones.

5.7 Future Work

Our future work will consist in improvements to our framework. First, additional
research is required to improve emulation quality. Second, the number of vulner-
abilities found (in particular by static analysis) is large and therefore, non trivial
to manually verify. Verifying them would require to automatically synthesize web
exploits, which is not currently possible. Finally, responsibly disclosing vulnerabil-
ities is time consuming and difficult (and in our experience is worse with vendors
of SOHO devices). It becomes an open challenge when it needs to be performed
at a large scale.

5.8 Summary

In this chapter, we presented a new methodology to perform large scale security
analysis of web interfaces within embedded devices. For this purpose, we designed
a framework leveraging off-the-shelf static and dynamic analysis tools. Because
of the limitations in static analysis tools, we created a mechanism for automatic
emulation of firmware images. While perfectly emulating unknown hardware will
probably remain an open problem, we were able to emulate systems well enough
to test the web interfaces of 246 firmware images. Our framework found serious
vulnerabilities in at least 24% of the web interfaces we were able to emulate.
When including the static analysis phase, 9290 issues were found in a total of
185 firmware images. This includes 225 high impact vulnerabilities that we were
able to verify.

Finally, our experiments and results confirm that the security of many of those
devices is seriously lacking. We therefore aim at running this framework as a
continuous process. This can help to improve its quality and to keep on finding
vulnerabilities in such devices, hoping they will be addressed by the vendors. Such
a service could also be useful to device vendors who can benefit from automated
security testing before shipping their products. We hope our system can help
make the Internet and IoT more secure.

Ph.D. Thesis — Andrei Costin

Chapter 6

Scalable Firmware
Classification and
Identification of Embedded
Devices

6.1 Introduction

A firmware image is in general custom made for a specific device and a device
model is running a particular firmware file. This is relatively easy for a human to
follow during manual analysis (e.g., firmware upgrade process). However, because
devices are so diverse, it is not trivial for computers and automated systems to
link a device model and a firmware image.

For instance, when manually downloading a single firmware file from a vendor
site, it is often relatively easy for a human to know the vendor and the device
for which the firmware is intended. However, for an automated system which
crawls thousands of firmware files from unstructured download sites it is not a
trivial task to categorize firmware files by device class or even by vendor. We
identified and described this problem as the “Firmware Identification” challenge
in Chapter 4.

6.1.1 Open Problems

Within this context we identify and formulate two problems as follows: First, how
to automatically and accurately label the brand and the model of the device
for which the firmware is intended. Second, how to automatically identify the
vendor, the model and the firmware version of an arbitrary remote online device.

79

80
6. SCALABLE FIRMWARE CLASSIFICATION AND IDENTIFICATION OF

EMBEDDED DEVICES

Those steps need to be preformed in a reliable way which is independent of the
device, the vendor, or the custom protocols running on the device.

6.1.2 Overview of our Approach

In our method, we apply Machine Learning (ML) to classify firmware files ac-
cording to their vendor or device type. We use two widely adopted algorithms,
Random Forests (RF) and Decision Trees (DT), based on their implementation
in scikit-learn package [168]. We explore several feature sets derived from
the characteristics of firmware images, such as file size, file entropy and common
strings. Then, we recommend the optimal feature set for this type of classifi-
cation problems and show that our approach achieves high accuracy. Moreover,
using sound statistical methods such as confidence intervals we estimate the
performance of our classifiers for large scale real world datasets.

We then perform web interface fingerprinting both on previously classified firm-
ware files, which we then emulate, and on real devices. We build a fingerprinting
database based on these emulated and real devices. Then we can match an
unknown embedded web interface to the list of known web fingerprints in our
database by using multiple matching metrics, such as the sitemap or the HTTP
protocol Finite-State Machine (FSM). Finally, we use multiple scoring systems
to rank the fingerprint matches.

6.1.3 Contributions

In summary, we make the following main contributions:

• We apply machine learning in the context of firmware classification, and
we study and propose the firmware features that makes this possible.
• We show that using machine learning it is possible to automatically classify

sets of firmware images with high accuracy.
• We study the fingerprinting and identification of embedded devices and

their firmware version by performing multi-metric web interface finger-
printing of physical and emulated embedded devices.

6.2 Firmware Classification and
Identification

In this section we present our classifier. We use supervised Machine Learning
(ML), i.e., the ML algorithm must be trained with a set of (manually) annotated
samples before it can classify unknown samples. We experimented with Decision

Ph.D. Thesis — Andrei Costin

6.2. FIRMWARE CLASSIFICATION AND
IDENTIFICATION 81

Trees (DT) and Random Forests (RF). Compared to Support Vector Machines
(SVM), DT and RF algorithms do not require cross-validation, are able to better
handle non-linear features, and are easier and faster to train.1

Supervised ML algorithms require data features that they can use to partition
and distinguish the learned classes of data. This means that feature selection is
an important step towards how successful the learning and classification will be.
Feature selection is usually specific to the domain to which the ML is applied,
and this selection must be carefully performed and evaluated.

We therefore first present our dataset, then the features we selected and finally
we measure the performance of the classifier.

6.2.1 Dataset

We first obtained access to a large firmware dataset, which contains more than
172K firmware images as detailed in Chapter 4. From this initial dataset, we
selected 215 firmware images from 13 vendors. Although we did not perform
a truly random selection, we tried to ensure that the set of selected firmware
images contains enough variance in terms of vendors, product types, and firmware
image properties (e.g., size, file format). Those vendors manufacture several type
of devices: routers, home automation, multi-function SD cards, Set Top Boxes
(STB), VoIP devices, avionics radars, Closed-Circuit TeleVision (CCTV) and
Digital Video Recording (DVR) systems. We will refer to these 13 vendors as
classification categories. Each of these categories contains a varying number of
firmware images. In fact, this is a realistic scenario since firmware release cycles
and strategies are very diverse. Each classification category contains between 5
and 54 firmware images, with an average of 16 images per vendor (i.e., category).

Finally, we create a special classification category of files for which we know that
they are not firmware images. For example, such files include drivers, and PDF
or text documents, which are often released along with firmware updates at a
common download location or in a common file archive.

6.2.2 Features for Machine Learning

A classification of a firmware file can be performed at vendor level or at device
line level, depending on the granularity objectives. For consistency, we will refer
to vendor categories or device line categories simply as classification categories.

Firmware file size. The file size of a full firmware upgrade for an embedded
device is directly linked to the hardware design and the functionalities of the

1https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#ooberr

Large Scale Security Analysis of Embedded Devices’ Firmware

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#ooberr

82
6. SCALABLE FIRMWARE CLASSIFICATION AND IDENTIFICATION OF

EMBEDDED DEVICES

device. In other words, the size of the firmware is dictated by the device’s memory
constraints and the minimal set of binaries required to provide the functionality.
At the same time, a firmware upgrade file cannot exceed the limited memory
available in the particular device lines which it targets. Hence, this motivates
using firmware file size as a good feature to discriminate between firmware
images for devices from different classification categories.

Firmware file content entropy. Most of the vendors use their own procedures
to build and package a firmware upgrade. Vendors then wrap them into non
standard file formats suitable for the device line. This makes the firmware images
from a particular classification category to have specific distribution and density
of the information they contain. Hence, we propose to use information theory
metrics as features for ML. In this sense, we use the following characteristics2 of
the firmware files as ML features:

• File entropy, i.e., the informational density of bits per byte
• Arithmetic mean of file bytes
• File compressibility percentage, i.e., an empirical value that is an upper

bound of the Kolmogorov complexity
• Serial correlation value
• Monte-Carlo value and its estimation error
• Chi-square distribution and its excess error

We will refer to the file entropy as entropy feature and to the rest of the features
from the above list as the entropy extended features set.

Firmware file strings. Many software packages, including firmware files, con-
tains strings. These strings may contain copyright, debugging or other infor-
mation. They often contain vendor or device specific information. Therefore,
the strings in a given firmware file represent a pretty good fingerprint of the
corresponding firmware, device and vendor. As a consequence, the intersection
of strings of each firmware file within a particular classification category may
represent a strong classification feature. In other words, suppose an unknown
firmware sample contains a string that is found within strings intersection of a
classification category A. Then there are high chances that the firmware file is
somehow related to the files in the classification category A.

At the same time though, many firmware files (spread across different classifi-
cation categories) may contain strings that are common across multiple classifi-
cation categories. For example, this happens if the firmware uses common Free
Open Source Software (FOSS) code such as Linux kernel or OpenSSL libraries. In

2We extract these characteristics from the output of the ent Linux utility.

Ph.D. Thesis — Andrei Costin

6.2. FIRMWARE CLASSIFICATION AND
IDENTIFICATION 83

ABC

ABDABD

AAA

Str Str Str
File1 File2FileN

ABE

ABDBBB

CCC

BCD

ABDBBB

BCE

BCF

ABDAAA

CCC

AAA

ABDBBB

CCC

FW Cat-
Egory

1

AAA

ABDBBB

CCC

DDD

ABDEEE

FFF

ABDEEE

BBB

DDD

ABDCCC

FW Cat-
Egory

2

AAA

ABDXXX

ZAA

ZZZ

ABDBBB

YAA

ABDYBB

XXX

ZZZ

ABDBBB

FW Cat-
Egory

K

Category
Common

String
Feature
(CSF)

Category
Common
Unique
String
Feature
(CUSF)

XXX

ABDBAA

BBB

CCC

ABDZZZ

AAA

ABDBBB

CCC

ABDEEE

BBB

DDD

ABDCCC

XXX

BBB

ABDZZZ

AAA

EEE

DDD

XXX

ZZZ

Unknown FW

CSF CUSF

Strings

ABC, AAA,
BBB, CCC, XYZ

1
(AAA, BBB, CCC)

1
(AAA)

0

0

1
(BBB, CCC)

1
(BBB)

Firmware
Machine Learning

Ground Truth
DB

Figure 6.1: Derivation and assignment of strings-based features.

this case, if using the “naive” string-to-category matching, an unknown firmware
sample can match several different classification categories and can mislead the
ML classifier. To overcome this, for each trained classification category we also
build a dictionary that contains only strings unique to that category and are not
contained in any classification category.

Therefore, each classification category in the training set adds two different fea-
tures – the Category Strings Feature (CSF) and the Category Unique Strings
Feature (CUSF). A trained or unknown file gets the CSF and CUSF feature
value (i.e., 0 or 1) assigned as depicted in Figure 6.1.

Fuzzy hashes. Fuzzy hashing is the technique to compute the percentage
of similarity between two different files. The cryptographic hashing is used to
determine if two different files are exact equals, while the fuzzy hashing is used
to determine if two different files are homologous, i.e., are similar but not exact
equals.

Intuitively, firmware files from a given classification category should generally be
“fuzzy hash similar” among themselves then cross-category. For this reason, for
each trained classification category we build a list containing fuzzy hashes of files
within the category.

Large Scale Security Analysis of Embedded Devices’ Firmware

84
6. SCALABLE FIRMWARE CLASSIFICATION AND IDENTIFICATION OF

EMBEDDED DEVICES

For a training or an unknown file, we compare its fuzzy hash with the fuzzy
hashes in the list of each category. If there is at least one fuzzy hash match
with similarity above an empiric threshold (default similarity threshold is 50%),
the fuzzy hash feature of that category is set to 1. Otherwise, if none of the
fuzzy hashes from a category’s fuzzy hash list does match above the threshold,
the fuzzy hash feature of the category is set to 0. Therefore, each classification
category in the training set adds one additional feature.

Surprisingly, including the fuzzy hash similarities as features proved to result in
worse classification accuracy as discussed in Section 6.2.4 and Section 6.2.5.

6.2.3 Experimental Setup

Running supervised machine learning experiments requires training sets. Since
our dataset have the classification categories of varying lengths (Section 6.2.1),
we create the training sets by taking a constant percentage from each category
as training samples. We start with 10% as training set percentage and then
increment by 10% until training set percentage reaches 90%. For each training
set percentage, we run 100 experimental runs by randomly sampling the given
percentage of files as training samples, running the training and classification,
and finally computing the average classification error. For any experiment run, we
use both Decision Trees and Random Forests algorithms so that we can compare
their performance under various conditions.

Listing 6.1: Pseudo-code for preparing and running the ML experiments.

for P in [10% to 90% step 10%]
begin

for R in [1 to 100 step 1]
begin
RF_Exper_Perc_P_Run_R(ClsfyTrue, ClsfyFalse) =
ML_RandomForest_Classify(
set_train = random_sampling(dataset, P),
set_classify = sets_diff(dataset, set_train),
set_features

)
DT_Exper_Perc_P_Run_R(ClsfyTrue, ClsfyFalse) =
ML_DecisionTree_Classify(
set_train = random_sampling(dataset, P),
set_classify = sets_diff(dataset, set_train),
set_features

)
end
RF_Exper_Perc_P_Avg_Error =
Avg(RF_Exper_Perc_P[ClsfyFalse])

DT_Exper_Perc_P_Avg_Error =
Avg(DT_Exper_Perc_P[ClsfyFalse])

Ph.D. Thesis — Andrei Costin

6.2. FIRMWARE CLASSIFICATION AND
IDENTIFICATION 85

10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

100

Firmware Classification Performance

(size, entropy)

RandomForests

DecissionTrees

Training Set Size (% from dataset)

C
la

s
s

if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Figure 6.2: Firmware classification performance using [size, entropy] feature set of the
firmware files.

end

6.2.4 Evaluation

The performance of the firmware classification for various machine learning al-
gorithms, feature sets and size of the training sets (i.e., percentage from the
original dataset) is summarized in the Figures 6.2, 6.3, 6.4, and 6.5.

Firstly, according to the intuitive expectation, we can observe that the classifi-
cation accuracy improves with the increased size of the training set. Secondly,
contrary to the intuitive expectation, the addition of the fuzzy hash similarity
features reduced the accuracy. We expected that the fuzzy hash similarity fea-
tures would increase the accuracy of the classification. However, this addition
made both the RF and the DT classifiers perform worse. With these features
the DT classifier also performed much worse compared to the DT classifiers
with very basic feature sets, such as [size, entropy] or [size, entropy,
entropy extended]. At the same time, the RF classifier in this setup failed to

Large Scale Security Analysis of Embedded Devices’ Firmware

86
6. SCALABLE FIRMWARE CLASSIFICATION AND IDENTIFICATION OF

EMBEDDED DEVICES

10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

100

Firmware Classification Performance

(size, entropy, entropy extended)

RandomForests

DecissionTrees

Training Set Size (% from dataset)

C
la

s
s

if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Figure 6.3: Firmware classification performance using [size, entropy, entropy extended]
feature set of the firmware files.

perform at least marginally better than the RF classifiers based on basic feature
sets mentioned above. One explanation for this bad performance could be the
fact that fuzzy hash is not an accurate file match. Such hashing can return high
similarity scores even for pair of files that are totally unrelated. The accuracy of
the fuzzy hashing can be influenced by the file size and various other factors.

Based on the above observations, we conclude that the feature set [size,
entropy, entropy extended, category strings, category unique strings]
constitutes the best choice. It provides best accuracy when used with the RF
classifiers. Using this feature set, the RF classifier achieves more than 90% clas-
sification accuracy when the training set is based on at least 40% of the known
firmware files. We argue that such a percentage to form a training set is feasible
in real-life. In other words, let us consider the case when a device is expected to
have two firmware versions during its life-time. For example, the original firmware
running on the device and the firmware update to fix a critical bug. Having access
to the original firmware (e.g., downloading from the vendor’s device-recovery site
or using techniques similar to flash dumping) means one can already have access
to 50% of that device firmware set.

Ph.D. Thesis — Andrei Costin

6.2. FIRMWARE CLASSIFICATION AND
IDENTIFICATION 87

10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

100

Firmware Classification Performance

(size, entropy, entropy extended, strings, strings unique)

RandomForests

DecissionTrees

Training Set Size (% from dataset)

C
la

s
s

if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Figure 6.4: Firmware classification performance using [size, entropy, entropy extended,
strings, strings unique] feature set of the firmware files.

Therefore as a reference we can safely use the training set size of 50% of known
firmware files. Under these assumptions, the RF classifier achieves a very high
accuracy of 93.5%, while the DT classifier classifies correctly only 88.4% of
firmware files. Another observation is that both the RF and the DT classifiers
using other feature sets reach the 90% accuracy only for training set sizes of
80%–90% of the known firmware files, which is not practical in real-life. Also,
the RF and the DT classifiers with the most basic feature set [size, entropy]
does not even reach 90% classification.

While we make all the effort to identify the most reliable feature set and learning
classifier, the generalization of learning is a known open problem in the machine
learning field [53,56,92].

The current machine learning algorithms performances cannot be guaranteed on
another dataset (e.g., bigger). We try to compensate this limitation with statis-
tical methods, such as confidence intervals. In this context, we used statistical
confidence intervals [61] to evaluate the accuracy of our technique when applied
to real-world populations of firmware images.

For example, let us consider any firmware in the original dataset of 172K firmware

Large Scale Security Analysis of Embedded Devices’ Firmware

88
6. SCALABLE FIRMWARE CLASSIFICATION AND IDENTIFICATION OF

EMBEDDED DEVICES

10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

100

Firmware Classification Performance

(size, entropy, entropy extended, strings, strings unique, fuzzyhash)

RandomForests

DecissionTrees

Training Set Size (% from dataset)

C
la

s
s

if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Figure 6.5: Firmware classification performance using [size, entropy, entropy extended,
strings, strings unique, fuzzy hash] feature set of the firmware files.

images. With an accuracy of 99%, we can compute the confidence interval for
our best feature set and a training based on 50% of the dataset. In this case,
our Random Forest firmware model can correctly classify the firmware in 93.5%
± 4.3% of the cases. Manually annotating 50% of a dataset with 172K firmware
images is not trivial and does not scale. However, this challenge can be solved
using alternative approaches. First, many files could be automatically annotated
based on the metadata that was acquired by the crawler, assuming that the
metadata from the vendor is reliable. Second, building in an incremental manner
a clean training set can be achieved by using services like Amazon’s Mechanical
Turk or by using techniques similar to Google’s CAPTCHA for recognizing OCR
text or for mapping street numbers from street views. We leave this interesting
challenge for future work.

6.2.5 Discussion

Some vendors have dozens of product types and therefore have many different
firmware branches. In such cases, to achieve finer granularity of firmware classi-

Ph.D. Thesis — Andrei Costin

6.3. DEVICE FINGERPRINTING AND IDENTIFICATION 89

fication, the training and the classification categories can be formed per type
of device, the training dataset has to be split accordingly.

There are other cases when a firmware upgrade is wrapped into multiple layers of
packaging. This makes the firmware more challenging to unpack and it is harder
to understand at which layer exactly the firmware upgrade file starts or ends. For
example, a firmware image (e.g., .bin, .img, .fw) is provided in compressed
formats (e.g., .zip, .gz). Classifying compressed formats using our features
set (Section 6.2.2) is not trivial, since the entropy of compressed files is very
similar regardless of its content. These challenges can be solved as follows. Any
firmware package that must to be classified is also unpacked using best-effort or
brute force unpacking. The unpacked tree is traversed one depth-level at a time.
All the files at a particular unpack level are classified using exactly the same
optimal approach described above. Once a successful classification is achieved,
the unpack sub-tree under the freshly classified file is considered to belong to
the particular vendor and device line. This process can stop or continue for other
unclassified files in the unpack tree, depending on the goal and constraints.

Finally, more experimentation with the the fuzzy hash similarity feature set is
required to take full advantage of the fuzzy hash information. We plan to address
this in future work as follows. Instead of using a hard threshold of 50% and a
feature value of 0 or 1, we can compute a fuzzy has similarity feature value be-
tween 0 and 100 as follows. The fuzzy hash of an unknown firmware is compared
to all fuzzy hashes in a given classification category, and the comparison values
are used later. Then the arithmetic mean is computed for all the comparison
values for the given category. This will result in a value between 0 and 100. In
practice, these steps are repeated for all the classification categories to compute
the fuzzy hash feature value for the unknown firmware, corresponding to each
category.

6.3 Device Fingerprinting and Identification

Many approaches exists for fingerprinting and identification of computing device
and sensors [60,90,113,144,163,176]. However, the fingerprinting features used
by these techniques are strongly linked to the real hardware or the way the live
devices operate. Such strong dependencies can make these techniques less effec-
tive, for example when dealing with emulated devices and virtualized appliances.
In addition, these techniques do not necessarily take advantage of the devices’
firmware packages that can be emulated or can provide additional information
for a reliable device identification.

At the same time, it is known that the embedded devices lack the user interfaces
of desktop computers, such as keyboard, video, mouse. However these devices
need to be administered one way or another. Even though some devices alterna-
tively rely on custom protocols such as “thick” clients or even legacy interfaces

Large Scale Security Analysis of Embedded Devices’ Firmware

90
6. SCALABLE FIRMWARE CLASSIFICATION AND IDENTIFICATION OF

EMBEDDED DEVICES

(e.g., telnet), the web became the universal administration interface. For this
reasons, the firmware of these devices often embed a web server providing a web
interface and these web applications range from quite simple to fairly complex.

These observations suggest that higher level approaches are required or can
prove helpful in order for the fingerprinting to reliably work regardless the way
the devices operate.

Therefore, in contrast to existing work we propose an approach that finger-
prints the devices at a high level possible, the embedded web interface level.
This approach can also take advantage of the firmware contents and the device
emulation based on the firmware images alone. Previous work touched some
aspects of our fingerprinting techniques. However, those either suggest manual
approaches [162] or do not provide enough insights and evaluations [183].

6.3.1 Dataset

In our fingerprinting experiments we used 27 firmware images originating from
3 vendors that split across 7 functional categories. Out of these 27 emulated
firmware images, 9 of them where also part of the firmware ML classification
experiments. Specifically these 9 firmware packages were classified by our ML
firmware model with an accuracy of 100% using Random Forest (and around
99.5% using Decision Tree). Additionally, we used 4 physical devices from 2
vendors that cover 4 functional categories.

The detailed breakdown of the 27 emulated devices is as follows:

• Network Video Servers – Brickcom VS-01Ae, firmware version v3.1.0.4

• IP Cameras – Brickcom CB-100Ae, CB-100Ap, CB-102Ae_V2, CB-102Ap_-
V2, FB-100Ap, FB-100Ap_V2, FB-130Np_V2, OB-100Ap, altogether run-
ning ten firmware images

• PTZ Dome Cameras – Brickcom FD-100Ae, FD-100Ae_V2, FD-100Ap,
FD-130Ae_V2, FD-130Ap_V2, FD-130Np_V2, MD-100Ap_V2, VD-100Ae_-
V2, VD-130Ap_V2, VD-300Ap_V2, altogether running ten firmware im-
ages

• Multi-function SDcards – Transcend WiFiSD, firmware versions v1.2.1
and v1.6

• Wireless Routers – NetGear WNR612, firmware version v3-v1.0.0.11

• DSL Modem Routers – NetGear DG632, firmware versions v3.3.0.a.cx
and v3.40

• Wireless Access Points – NetGear WNAP210, firmware version v2.0.27

Ph.D. Thesis — Andrei Costin

6.3. DEVICE FINGERPRINTING AND IDENTIFICATION 91

The detailed breakdown of the 4 physical devices is as follows:

• Wireless Routers – DLink DIR-632, firmware version DD-WRT v24-sp2
(01/24/13) std (SVN revision 20548)

• Ethernet Routers – DLink DI-604 (F4), firmware version v3.14

• DSL Modem Routers – DLink DSL-2500U (A1), firmware version v3-06-
04-0Z00-RU

• Wireless DSL Modem Routers – Netgear DG-834GT, firmware version
v1.03.23

6.3.2 Metrics for Fingerprinting

We propose six different metrics (i.e., features) that are computed for each train-
ing or unknown embedded web interface. These metrics are: sitemap, FSM,
fuzzyhash header, fuzzyhash content, cryptohash header, cryptohash
content. We present them below and motivate the choice.

Sitemap. A sitemap is a list of pages of a website which are publicly or pri-
vately accessible. Most of the times, each website (or a web application) has its
unique structure of sitemap. That is, files and URLs that exist in one website do
not necessarily exist in another one, even if they run on the same web server.
Therefore, a sitemap of a web application can be used one of its uniqueness
feature.

To this end, we leverage this fact and create a fingerprint based on this assump-
tion. More precisely, if we want to categorize the web interface of an unknown
embedded device, we can try to access URLs and files which exist in our trained
dataset and represent the sitemap of a known web application. If the sitemap of
the unknown web interface perfectly matches with a known one in our database,
we can classify it with high confidence as belonging to an embedded device
running a specific firmware version.

HTTP Finite-State Machine. The HyperText Transfer Protocol (HTTP),
as defined in RFC 2616 [111], is a stateless application-level protocol for dis-
tributed, collaborative, and hypermedia information systems. The protocol is
defined as a conversation between the client and the server, where text mes-
sages are transmitted in an alternating way. Messages consist of requests from
client to server and responses from server to client. Both types of messages
contain a start line, zero or more header fields (known as headers), an empty
line that indicates the end of the headers, and optionally a message body . Each

Large Scale Security Analysis of Embedded Devices’ Firmware

92
6. SCALABLE FIRMWARE CLASSIFICATION AND IDENTIFICATION OF

EMBEDDED DEVICES

line ends with a line-terminator, denoted as CRLF. Each header consists of a
case-insensitive name followed by a colon and the field value.

For our fingerprinting and detection purposes we focus only on the server re-
sponses, i.e., the responses from the embedded web interfaces. HTTP is a lib-
eral protocol which means that the structure of a response message is diversified
among the different web server implementations. Each web server implements
the response messages differently in terms of the headers it uses, the sequence of
these headers inside the message, and the value of each header. Hence, it is pos-
sible to fingerprint them by extensively analyzing the messages they exchange.
In this work, we leverage these differences to identify the type of server involved
in a specific HTTP conversation.

More precisely, we create a model which is able to learn the headers’ order
of an HTTP response and then use this order to classify an unknown HTTP
conversation. To this end, in order to represent the headers’ order of an HTTP
response, we define a header sequence as a vector

−→
H = (h1, h2, ..., hn) with

header names as elements. For each HTTP response of a known web server S,
we create and store a pair (

−→
H,S) of the request’s header chain

−→
H and the server’s

name S. To classify an unknown server, we form its sequence U−→
H

and compare

all our labeled
−→
H with the unlabeled sequence U−→

H
. If we find that a sequence

−→
H is equal to the observed sequence U−→

H
, we assume that the corresponding

server S generated this response. In essence, we have implemented an HTTP
Finite-State Machine (FSM) in which the headers represent the states of this
FSM and the order of the headers the transitions from one state to another.

Cryptographic hashing of content and headers. We expand the FSM ap-
proach by using not just the header names of an HTTP response but also their
actual values. We investigate when and how these values can be used to classify
an unknown web interface. Although some headers will always display the same
information (e.g., the header Server shows information about the web server),
few other headers will not remain constant over time (e.g., the header Date
represents the date and time at which a message was originated). Such small
variations in responses results in significant changes in the cryptographic hashes
of the headers. For example, the cryptographic hashes of headers of two consec-
utive responses to exactly the same static web resource (e.g., favicon.ico) will
results in two different values and will generate a false mismatch. To overcome
this type of “noise”, instead of retrieving the actual value of such a header, we
dynamically create a regular expression. As a consequence, headers such as Date
(that always displays different values even for a static web resource) do not affect
our metrics and matching. Note that we do not generate regular expressions for
the body of the response message.

We create two cryptographic hash values from a complete HTTP response. The
first contains the hashed headers of the message as explained above and the

Ph.D. Thesis — Andrei Costin

6.3. DEVICE FINGERPRINTING AND IDENTIFICATION 93

second contains the hashed message body. If we have a perfect match between
an unknown HTTP response and an HTTP response contained in our fingerprints
database, we can successfully fingerprint the device that sent this response. It is
worth mentioning that many times a HTTP response from an unknown device
will match a list of devices that can reply back with responses that hash to the
same values. In those cases, we can use this approach to narrow down the number
of possible devices that match this response. Overall, a successful fingerprinting
contains a combination of all the metrics we apply.

These two metrics are a better fit for resources that are statically delivered to the
client (e.g., user’s web browser), such as JavaScript, CSS, and image resources.

Fuzzy hashing of content and headers. It is not always possible to have a
fingerprint based on a cryptographic hash value even if it comes from the same
device. This mostly happens because even a small modification on just one byte
in a large byte stream can cause the cryptographic hash function to generate
a completely different hash value. For example, consider a configuration page
which allows the users to set custom SSIDs for a wireless router or custom host
names for an Ethernet router. Even though the server-side page is the same,
the page returned to a client or crawler will have two different cryptographic
hash values for two different SSIDs or host names. To counter this behavior we
use fuzzy hashing which we introduced in Chapter 2. We chose to use Context
Triggered Piecewise Hashes (CTPH) [147] to define the similarity between an
unknown HTTP response and a list of HTTP responses for which we know their
fuzzy hashes. The procedure we follow is quite similar to the one we followed
in the case of the cryptographic hashing, but in this approach we are using a
completely different hashing function.3 If the similarity between an unknown and
a known HTTP response exceeds an empirically calculated threshold, we can
successfully classify this unknown device.

These two metrics are a better fit for resources that are dynamically generated
or are interpreted on the server-side, such as CGI and PHP resources.

6.3.3 Scoring Systems for Metrics

Scoring is the way each metric contributes to the final rank of a given match.
We propose three different scoring systems and briefly present them below.

Metrics majority voting score. In this scoring system, each metric of each
fingerprint match is ranked in decreasing order. The fingerprint match that ranks
highest on most of its metrics is considered to be the most accurate match to
the unknown sample.

3http://ssdeep.sourceforge.net/

Large Scale Security Analysis of Embedded Devices’ Firmware

http://ssdeep.sourceforge.net/

94
6. SCALABLE FIRMWARE CLASSIFICATION AND IDENTIFICATION OF

EMBEDDED DEVICES

Uniform and non-uniform weighting scores. In these scoring system, each
metric value of a fingerprint is assigned a weight. Then, for each metric of each
fingerprint all the weighted values are summed into a total value of the finger-
print. Finally, all the total values are ranked in decreasing order. The fingerprint
match whose total value ranks highest is considered to be the most accurate
match to the unknown sample.

For our evaluation, we used the uniform weights of 16.6% for each of the six
metrics. We also used the empirically found weights for each of the six metrics:
4% for sitemap, 4% for FSM, 1% for fuzzy hash header, 1% for fuzzy hash
content, 10% for crypto hash header, 80% for crypto hash content.

Score fusion. In our evaluation, we used the score fusion technique to improve
the accuracy of identification. The score fusion technique is widely and actively
used in various research fields, such as biometrics [161] and sensors data [143].
It is used to increase the confidence in the results and to counter the effect
of imprecisely approximated data (e.g., fingerprints in biometrics) and unstable
data readings (e.g., sensors data).

We take as input the decreasingly ordered rankings from each of the scoring
systems described above. Then, we apply majority voting to each ranking from
these three scoring systems. This allows our system to decide which match is
the most accurate based on its scores computed using the three different scoring
systems presented above.

6.3.4 Experimental Setup

We start by emulating the 27 firmware images and connecting up the 4 physi-
cal devices. At this step we apply the firmware emulation technique previously
introduced in Chapter 5. Then we create one fingerprint for the embedded web
interface of each of these 31 devices. Subsequently we create a list of IP ad-
dresses based on the IP address of each of the 31 running devices. We make
sure that the list of IP addresses is randomized every time it is created. We
feed sequentially each IP address to the identification module which acts like
an oracle and has to “guess” to what fingerprint to assign the web-interface at
this particular IP address. For this, the identification module loads the previously
created fingerprinting database, computes the metrics for each URL and accu-
mulates them, runs the scoring systems and finally outputs the most accurate
fingerprint match by applying the score fusion method. The list of these steps
constitutes an experimental run.

We execute the above steps for 100 experimental runs at various points in time,
under varying network conditions and varying IP address assignments. We also
vary the number of threads used for web interface crawling and the speed at

Ph.D. Thesis — Andrei Costin

6.3. DEVICE FINGERPRINTING AND IDENTIFICATION 95

which they crawl. Finally, we compute the average of successful and erroneous
identification rates based on results from each experimental run.

6.3.5 Evaluation

Summarized, our tests on average resulted in 89.4% accuracy in device iden-
tification. The tests were run using a database containing 31 fingerprints of
embedded web interfaces. The fingerprinted web interfaces contained around a
third of similar or consecutive firmware versions (e.g., Brickcom).

Our evaluations show that the cryptographic hash of the content is the most sta-
ble and accurate feature. On average, it provided an accuracy of more than 85%.
On the other end, the fuzzy hash of headers and content were the most unstable.
One reasons for this is that fuzzy hashing does not perform well with short data
(e.g., HTTP headers). Another reason, as discussed also in Section 6.2.4, could
be the fact that fuzzy hash is not an accurate data match and can introduce
noise rather than useful similarity information. These empirical observations lead
us to choose the non-uniform scoring weights as presented in 6.3.3. Finally, the
most accurate scoring system in our tests was the majority voting, followed by
the non-uniform. As expected, the uniform weights scoring system performed the
worst with more than 50% of classification errors. This can be explained by the
high weights assigned to non-accurate and noisy fuzzy hash metrics.

6.3.6 Discussion

Embedded web interface’s URLs that majorly affect the device functionality,
e.g., reboot.php, FW-upgrade.cgi, represent a particular challenge. Access-
ing such URLs during fingerprinting or matching may cause the device to go
offline or malfunction right in the middle of the identification process. As a re-
sult the fingerprint or match will be partial and may produce wrong results.
Undoubtedly, automatically detecting such URLs and excluding them from the
identification process may help prevent such behavior. One way to achieve this
detection is by doing manual annotations on a case-by-case basis, but this obvi-
ously does not scale. Other ways to achieve this is by using static and dynamic
analysis. Alternatively, it is possible to perform a first sequential run on each
URL of an embedded web interface and check the “liveness” of the embedded
web interface after each URL is accessed. Even though this method is not 100%
accurate since the device can go offline or malfunction for other reasons as well,
it may help removing the perturbing URLs and establish a “safe” list of URLs to
be used for device identification. Finally, though removing few URLs from the
identification process might slightly reduce the exploratory surface of the device’s
web interface, the number of such URLs in practice is extremely low compared
to all other resources in the embedded web interface (e.g., images, JavaScript,

Large Scale Security Analysis of Embedded Devices’ Firmware

96
6. SCALABLE FIRMWARE CLASSIFICATION AND IDENTIFICATION OF

EMBEDDED DEVICES

styles, static help files). Thus the impact of their removal on the the scoring is
expected to be minimal.

Additionally, we designed our fingerprinting tools in a robust manner so that
they support HTTP authentication and HTTP cookies. This functionality is
required since many embedded devices user either HTTP basic authentication
or HTML forms authentication which is stored in session cookies. Having this
functionality enables us to create more granular fingerprints and, depending on
the embedded web interface, identify if a given access to a connected device is
unauthenticated, unauthenticated as admin, ... , unauthenticated
as userN.

Finally, our embedded web interface identification can be further improved by
combining our fingerprint data with results from complementary fingerprint lev-
els, such as device [144], CPU and clock [144], OS [190], network stack (e.g.,
NMAP) [114], combined (e.g., Nessus 4).

6.4 Usage Scenarios

While taking a research-oriented approach to the open problems formulated in
Section 6.1.1, with this work we also aim at providing practical results and
usability. Thus we consider that providing real-life examples and applications are
equally important. We do so by providing few usage examples for the techniques
we proposed.

6.4.1 Device Fingerprinting and Identification

Defensive use of the technique. In some cases, our device fingerprinting
and identification technique may be used to scan a home, SOHO or enterprise
network, and fingerprint the detected embedded web interfaces. Subsequently,
the fingerprint information may be used to identify the device vendor, the device
model and its firmware version. Additionally, this information can be used to
offer a firmware upgrade if the identified firmware version running on the device
is obsolete. The remaining unidentified devices in the network could be easily
annotated by the user with attributes such as vendor, device model and firm-
ware version. Finally, these new user annotated fingerprints can be added to our
database in an anonymized manner and can help increase the accuracy of our
platform.

Offensive use of the technique. In other cases, a penetration tester may be
performing a black-box penetration testing. She may use our device fingerprinting

4http://www.tenable.com/products/nessus-vulnerability-scanner

Ph.D. Thesis — Andrei Costin

http://www.tenable.com/products/nessus-vulnerability-scanner

6.4. USAGE SCENARIOS 97

FW
Repositories

 Unkown FW
File

ML ClassifyML
DB

Manual cross-
validate (e.g.,

CAPTCHA)

Firmware
Classification

Ground
Truth

(re)train
enhance

ML

Embedded
Web

Interface

Emulate
Firmware

Known
Physical
Device

(web) finger-
print train

(web) dyna-
mic analysis

CVEs
Exploits

DB

Finger-
print
DB

Ground
Truth

Web Finger-
print Match

Manual cross-
validate

Test Web
Exploitability

FW Match For
Unknown Device

LAN
Internet

Unknown
Device

Figure 6.6: End-to-end process where our firmware classification and device identifica-
tion techniques are applied.

Large Scale Security Analysis of Embedded Devices’ Firmware

98
6. SCALABLE FIRMWARE CLASSIFICATION AND IDENTIFICATION OF

EMBEDDED DEVICES

and identification technique to identify the exact device model and the firmware
version of an unknown embedded device encountered in the network under test.
With this information, CVEs or exploits could be retrieved for the particular
device model and firmware version. This may help increase the test’s success
rate and decrease the time required to perform the test.

6.4.2 Firmware Classification

Correct identification and classification of a firmware could be extremely ben-
eficial. For example, once a firmware file is correctly classified according to its
vendor, category or model, various optimization could be applied. First, only a
specific set of firmware unpackers are run on the firmware, skipping the brute
force unpacking, thus saving processing time and providing the results faster.
Second, once the vendor is known as a result of a successful classification, then
very specific static analysis techniques and tools may be applied according to
the knowledge about vendor’s development practices.

6.4.3 Towards Fully Automated System –
“Crawl. Learn. Classify. Identify. Pwn.”

It is possible to achieve a fully automated system depicted in Figure 6.6 by com-
bining the two techniques we propose. First, crawlers or web-submission portals
collect firmware images, which are then automatically classified and identified.
Once this is done, an emulator for the embedded web interface can be automat-
ically started [41]. The web interface emulator may allow finding new vulnera-
bilities via dynamic analysis and provides the opportunity to fingerprint it. This
creates a growing fingerprint database that is automatically improved. Second,
Internet and private network scanners or web-submission portals collect the IPs
of presumably embedded devices. Those IPs are analyzed and matched against
the fingerprint database. Finally, once the match contains an obsolete firmware
version, the system could automatically upgrade the firmware to the latest more
secure version or it could notify the owner of the inadvertently exposed online
device. The system could also automatically execute a list of penetration tests
or exploits related to the vulnerable firmware version running on the device.

6.5 Summary

In this chapter we presented two complementary techniques, namely embed-
ded firmware trained classification, and embedded web interface fingerprinted
identification. We proposed machine learning for the firmware classification chal-
lenge and explored multi-metric score fusion to address the web interface iden-
tification problem. With high confidence for real-world large scale datasets, our

Ph.D. Thesis — Andrei Costin

6.5. SUMMARY 99

tests demonstrate that the classifiers and features we propose can achieve 93.5%
accuracy in firmware classification and 89.4% accuracy in device identification.

Large Scale Security Analysis of Embedded Devices’ Firmware

Chapter 7

Conclusions

This dissertation presented novel techniques for automated large scale analysis
of software security in embedded devices and their firmware. We implemented
these techniques into a fully working framework and validated its effectiveness
against real-world data (i.e., firmware images and online devices).

We started the journey of this thesis with a simple yet effective framework.
Framework’s crawling modules efficiently collected firmware images for the pur-
pose of subsequent analysis. We used simple crawlers based on a mix of cus-
tomized site scrapers, custom search queries and support download locations.
We were able to collect 172K potential firmware images. Our further estimates
showed that with a confidence of 95% there should be at least 34% ± 8%
real firmware images in this dataset. This dataset then required unpacking and
security analysis. The unpacking module of our framework is based on a cus-
tomized extension of the Binary Analysis Toolkit (BAT) platform, but can be
easily extended in the future with other unpacking frameworks such as binwalk.
Even though the unpacking module cannot yet guarantee complete unpacking
of any firmware, it unpacked around 75% of processed firmware candidates. Ul-
timately, simple static analysis modules allowed us to find 38 new vulnerabilities
in 693 firmware images. For example, such modules analyze weak passwords in
/etc/passwd, collect and track online SSL and SSH private keys, and check for
simple security misconfigurations and obvious backdoors. These experiments al-
lowed us to identify five important challenges associated with the security analysis
of embedded firmware at large scale. Moreover, some challenges were strongly
linked to insufficiently researched areas that we successfully explored afterward.

We then improved our system by introducing static and dynamic automated
analysis of embedded web interfaces at large scale. The approach is based on
the distributed and architecture-independent emulation of the root filesystems
extracted during firmware unpacking. We also developed and employed a set
of automated heuristics to increase the success of both the firmware emulation
and the embedded web interface launch. Once the embedded web interfaces are

101

102 7. CONCLUSIONS

launched, our framework applies state of the art static and dynamic analysis
tools on them. Our fully automated system discovered in a matter of only few
hours high-impact vulnerabilities (e.g., command injection, XSS) in at least 20%
of emulated embedded web interfaces. At the same time, it could automatically
emulate the embedded web interfaces within 15% of web-enabled firmware pack-
ages. Increasing these success rates in an automated and intelligent manner is a
challenge that we want to address in our future work. Our approach is flexible
which means that new emulation and analysis techniques can be easily added
in the future. Moreover, though it is now known that many embedded devices
are insecure, our system is really the first demonstrating the possibility to fully
and feasibly automate dynamic analysis of heterogeneous embedded firmware at
scale.

Finally, we enhanced our system with additional intelligence by employing Ma-
chine Learning (ML) and classification techniques. To classify collected firmware
files, we explored Random Forests (RF) and Decision Trees (DT) algorithms
in combination with several feature sets. On our firmware dataset, we showed
that the RF algorithm with the feature set of [size, entropy, entropy
extended, category strings, category unique strings] is the best choice
among the four main feature sets we explored. For example, our system achieved
more than 90% classification accuracy when the training sets were based on at
least 40% of each known firmware category. To classify online embedded de-
vices, we explored web interface level fingerprinting based on multi-metric score
fusion techniques. Our system relies on fingerprints of the embedded web in-
terfaces computed over six metrics. Then it ranks the fingerprint metrics using
three scoring systems, and uses score fusion technique in the final evaluation of
the best fingerprint match. We also reasonably motivated our choices for the
metrics and the scoring systems in the context of embedded web interfaces. For
example, on average our system achieved 89.4% accuracy in device identification
based on a database of 31 fingerprints of embedded web interfaces. Ultimately,
we demonstrated that it is possible to classify firmware files and identify online
embedded devices with high accuracy.

7.1 Future Work

Future work will focus on building clean, annotated and representative datasets
of firmware images and device emulations. For example, these datasets could be
used by practitioners as “ground truth” in future experiments. This would allow
to evaluate the effectiveness and the efficiency of novel techniques aimed at
discovering vulnerabilities in embedded devices and their firmware. Furthermore,
this would allow a fair and reasonable comparison between different techniques
and approaches.

Another improvement planned as future work is to leverage a CAPTCHA-like

Ph.D. Thesis — Andrei Costin

7.1. FUTURE WORK 103

mechanism to build in an incremental manner a clean training set for firmware
classification. For example, unclassified firmware files could be randomly pre-
sented for classification to multiple users of our http://firmware.re service.
For cross-validation of the users’ response, a firmware with a known good label is
also presented as a challenge to the users along with the unclassified ones. One
challenge in this process could be the design of a visually compelling represen-
tation of the firmware files presented to the users. Finally, once an unclassified
firmware file achieves a classification threshold in a particular category, it is added
to the training set under the category’s label.

We also plan to develop novel tools and techniques for static analysis, with
a particular focus on their applications to securing the code within firmware
images. For example, these could be static analysis tools for web technologies
that are not well covered by the state of the art, such as Lua or Haserl. In other
instances, these could be binary static analysis methods for the myriad of less
common CPU architectures found in the embedded and IoT devices.

Finally, we plan to develop, deploy and monitor robust and maximally realistic
honeypots emulating heterogeneous embedded devices. This would allow to cap-
ture and analyze at early stages novel threats, exploits and malware that target
a diverse range of embedded and IoT devices.

Large Scale Security Analysis of Embedded Devices’ Firmware

http://firmware.re

Appendix A

Résumé de la thèse en
français

A.1 Introduction

Les systèmes embarqués sont omniprésents dans notre vie quotidienne et ils sont
de plus en plus présente dans de nombreux environnements informatique et en
réseau. En fait, plusieurs rapports estiment une augmentation du nombre de
dispositifs embarqués dans les prochaines années [133, 170]. Cisco prédit qu’il y
aura 50 milliards de dispositifs embarqués connectés en 2020 [72]. Ces appareils
seront produits par de nombreux fabricants différents et seront présents dans
de nombreux modèles différents. Chacun aura probablement plusieurs versions
de firmware, conduisant à un grand nombre de versions de firmware. Comme
indiqué dans le Chapitre 4, des centaines de milliers d’images de firmware sont
déjà disponibles, qui est juste une estimation de la limite inférieure de firmware
publiquement observables. Le nombre de fichiers du firmware probablement seule-
ment va croître avec le nombre de nouveaux dispositifs embarqués développés et
déployés.

Dans le même temps, la sécurité du firmware d’un dispositif embarqué moyenne
est empiriquement démontré que souvent faible [115, 198]. Cette observation
a été souvent faite par des évaluations indépendantes [58, 129, 132, 162]. Ces
évaluations confirment souvent que la sécurité de nombreux dispositifs embarqués
et leur firmware est très faible. Cela prouve encore une fois que de nombreux
vendeurs sont généralement plus intéressés dans la version la plus rapide et le
moins cher de nouveaux produits et fonctionnalités pour augmenter leur part de
marché. Cette pratique est généralement opposée à la construction de produits
sécurisés, où des tests précis est effectué contre les menaces de sécurité actuelles
et futures. Ces faits sont d’autant plus préoccupante que les failles de sécurité
dans les dispositifs embarqués et leur firmware sont souvent trouvés par les

105

106 A. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

praticiens de la sécurité en utilisant des approches qui ne sont ni systématiques
ni automatisé [36, 121].

Même plus, les vulnérabilités dans le firmware constituent un point d’entrée
facile pour les logiciels malveillants et font les dispositifs embarqués sujettes à
des attaques simples mais dévastatrices. En fait, depuis 2009, plusieurs botnets
(réseaux d’ordinateurs zombies) ont été découverts qui exploitait diverses vul-
nérabilités de firmware. Ces botnets ont compromis milliers, sinon des millions,
de dispositifs embarqués en ligne [49, 65–67, 99, 174, 195, 196]. Pire encore, les
dispositifs embarqués affecté sont difficiles à diagnostiquer et à récupérer (par
exemple, manque de solutions anti-virus pour les systèmes embarqués, aucune en-
trée/sortie conventionnelle). Par conséquent, ils restent souvent exploitées pen-
dant de longues périodes de temps. Par exemple, le botnet Carna [65] qui a été
utilisé pour produire le fameux “Internet Census 2012” (“Recensement Internet
2012”) était opérationnel depuis plus d’un an. En plus de cela, le taux de disposi-
tifs embarqués prévu pour connecter à l’Internet est exponentielle et la vitesse
des attaques propage à travers les systèmes et réseaux est inimaginable. Par
exemple, le virus Slammer a infecté plus de 90% des machines vulnérables dans
les 10 minutes [158]. En conséquence, l’intervention manuelle ou une analyse est
difficile, voire impossible. Cela confirme la nécessité pour détecter les vulnéra-
bilités de firmware avant qu’elles ne soient exploitées par des attaquants. Une
analyse manuel de firmware peut trouver ces problèmes [121], mais il peut être
beaucoup plus efficace pour automatiser le processus. Dans ce contexte, il est
souhaitable que l’analyse de la sécurité du firmware être automatisée et rapide,
et être effectuée en continu et à une grande échelle.

La situation devrait devenir encore plus préoccupante pour de multiples raisons,
qui peuvent être expliquées à l’aide d’une analyse récente de l’évolution atten-
due de l’IoT [86]. D’abord, en 2017, le nombre d’appareils connectés IoT devrait
dépasser le nombre de PC, les tablettes et les téléphones combinés, et le nombre
global de dispositifs IoT installés étant environ 7,5 milliards d’appareils. Deux-
ièmement, les dispositifs IoT sont prévus pour être à environs également répartie
(par exemple, par le comte de l’appareil) entre les secteurs des entreprises, des
gouvernements (par exemple, les infrastructures critiques) et les maisons [86].
Cela signifie que tous les grands secteurs sont censés être exposés à des menaces
de sécurité provenant de dispositifs embarqués vulnérables. Il est intéressant de
noter que le scénario prévu est quelque peu semblable à la hausse dans les at-
taques mobiles et les logiciels malveillants dans la fin de 2011 [154]. Ce qui est
arrivé à peu près quand le nombre d’appareils mobiles en usage (par exemple,
smartphones, tablettes) a dépassé le nombre de PC [86]. Il est très probable qu’en
2017 les dispositifs embarqués et IoT devront faire face à des attaques similaires
et un examen de la sécurité des technologies mobiles de façon rencontrés en
2011. Toutefois, cela peut probablement se produire à une échelle beaucoup plus
grande et ayant un impact élevé.

On sait que les techniques actuelles ne sont pas tout à fait adéquat pour dé-

Ph.D. Thesis — Andrei Costin

A.1. INTRODUCTION 107

couvrir efficacement vulnérabilités de firmware de manière évolutive. Certaines
techniques, telles que Avatar [203], nécessitent souvent l’accès physique aux dis-
positifs embarqués et la configuration manuelle laborieuse pour chaque appareil.
D’autres techniques, telles que Firmalice [184], exiger une politique de sécurité
doit être fourni pour chaque appareil. Par conséquent, en utilisant les méthodes
actuelles, le travail manuel est presque toujours nécessaire et les études à grande
échelle sont irréalisables.

En outre, afin de parvenir à une automatisation complète et une amélioration
continue du processus d’analyse, deux autres étapes doivent de préférence être
automatisées. Premier, que plusieurs fichiers de firmware sont développés et
donc recueilli, la possibilité de classifier précisément eux ou dire firmware de
non-firmware devient part importante. Par exemple, cela peut être utile de re-
grouper automatiquement les fichiers du firmware pour le même appareil ou du
même fournisseur, puis de les analyser en utilisant des méthodes spécifiques à
l’appareil ou le fournisseur. Malheureusement, les efforts actuels pour détecter
et classifier les fichiers (par exemple, les logiciels malveillants) [43,145,180], ou
d’utiliser Machine Learning (ML) [182,191], sont limitées à des domaines spéci-
fiques et ne couvrent pas spécificités de dispositifs embarqués et leur firmware.
Deuxièmement, comme de plus en plus dispositifs embarqués deviennent activé
pour le Web et relié à Internet, la capacité d’empreintes digitales et de les iden-
tifier avec une grande précision devient important. Par exemple, cela peut être
utile pour identifier rapidement et isoler des populations de dispositifs embarqués
touchés par une vulnérabilité particulière. Cependant, les techniques actuelles ne
peuvent pas être facilement appliqués [60,90,113] aux dispositifs embarqués qui
sont activé pour le Web ou connectés à l’Internet. Par conséquent, même si
l’automatisation de ces deux étapes ne sont pas explicitement liés à l’analyse de
la sécurité et de la découverte des vulnérabilités, elles sont souhaitables dans une
installation automatisée à grande échelle.

Toutes les considérations ci-dessus sont la base de la nécessité croissante de tech-
niques automatisées à grande échelle pour atteindre deux objectifs principaux.
Premier, il consiste à effectuer une analyse de la sécurité effective du firmware.
Deuxièmement, il est à classifier avec précision les dispositifs embarqués en ligne
et les fichiers du firmware recueillies.

A.1.1 Contributions de la Thèse

Cette thèse décrit des techniques évolutives pour découvrir des vulnérabilités
dans le firmware embarqué et de classifier les fichiers de firmware et dispositifs
embarqués en ligne. La méthode que nous proposons repose sur des mécanismes
automatisés et flexibles. La première étape est de recueillir goulûment et en per-
manence un grand nombre de fichiers du firmware hétérogènes. Ensuite, nous
avons développé des techniques pour décompresser efficacement le firmware et

Large Scale Security Analysis of Embedded Devices’ Firmware

108 A. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

d’analyser statiquement les fichiers décompressés. Nous essayons aussi d’émuler
chaque firmware et ses services (y compris les interfaces Web intégrées) dans
une “meilleur effort” et de manière générique. Par la suite, nous avons appliqué
l’analyse dynamique (par exemple, les outils de sécurité des applications web)
sur chaque instance émulé du firmware. Une étape supplémentaire est la corréla-
tion des vulnérabilités courantes parmi la population des fichiers du firmware.
Enfin, nous avons appliqué Machine Learning (ML) pour classifier les fichiers du
firmware, et nous avons utilisé les empreintes digitales d’application Web pour
classifier les dispositifs embarqués en ligne. La méthodologie de bout en bout est
représenté dans la Figure 6.6.

Comme d’autres méthodologies de découvrir et de classifier les vulnérabilités,
notre technique ne garantit pas à fournir une couverture complète de vulnérabil-
ités. Pas plus qu’il ne garantit pas une classification tout à fait exact des fichiers
du firmware et dispositifs embarqués. Néanmoins, il est la première démonstration
de la faisabilité de la découverte de la vulnérabilité dans les fichiers du firmware à
grande échelle. Par conséquent, nous prétendons qu’il est un moyen efficace pour
aider à accroître la sécurité des dispositifs embarqués, et donc de l’IoT. Même
si nous limitons notre travail principalement à la découverte de vulnérabilités
dans les images du firmware basé sur Linux (pour les architectures ARM, MIPS
et MIPSEL), les mêmes techniques peuvent être facilement étendues à d’autres
architectures CPU (par exemple, PowerPC), systèmes d’exploitation (par exem-
ple, VxWorks) et distributions de logiciels. En outre, d’autres méthodes ou des
outils d’analyse pourrait être facilement intégré à notre cadre. Par exemple, des
outils pour l’exécution symbolique ou fuzzing-outils pourraient être utilisés pour
effectuer une analyse dynamique avancé.

Nous avons élaboré un cadre entièrement automatisé, et nous l’avons utilisé pour
tester la découverte de vulnérabilités à grande échelle. Notre système a été en
mesure de trouver statiquement 38 nouvelles vulnérabilités dans 693 fichiers du
firmware. En plus de cela, notre système a été en mesure de découvrir dynamique-
ment 225 vulnérabilités à impact élevé (par exemple, injection de commandes,
XSS) dans au moins 20% des interfaces Web intégrées émulés (45 fichiers de
firmware). Nous avons également utilisé notre système pour classifier les fichiers
du firmware et les dispositifs en ligne. Notre système automatisé était capa-
ble de classifier correctement les fichiers de firmware et d’identifier dispositifs
embarqués en ligne avec une précision de 90% ou plus.

Les contributions de cette thèse peuvent être résumées comme suit:

• Nous sommes les premiers à proposer et effectuer la collecte et l’analyse
de la sécurité du firmware des dispositifs embarqués à grande échelle.

• Nous avons formulé les cinq premiers défis fondamentaux associés à ce
type de recherche, à savoir: Construire un dataset représentatif du firm-

Ph.D. Thesis — Andrei Costin

A.1. INTRODUCTION 109

ware; Identification de la firmware; Déballage du firmware et formats per-
sonnalisés; Limites d’évolutivité et de calcul; La confirmation des résultats.

• Nous sommes également le premier à démontrer la faisabilité d’automatiser
entièrement l’analyse dynamique du firmware hétérogènes à grande échelle.
Nous démontrons cela avec une analyse dynamique à grande échelle des
interfaces Web intégrées.

• En outre, nous sommes les premiers à proposer une classification précise
des dispositifs de firmware et embarqués en ligne, réalisée à grande échelle.
Pour cela, nous appliquons Machine Learning (ML), les empreintes digitales
de l’interface web et la fusion multi-métrique de scores.

• Nous mettons en œuvre les méthodes proposées dans un cadre entièrement
automatisé qui nous a permis de trouver rapidement un grand nombre de
nouvelles vulnérabilités dans de nombreux firmware pour une variété de
classes de périphériques et les vendeurs.

• Enfin, nous proposons la collecte de firmware, le déballage et l’analyse
comme un service en ligne (http://firmware.re).

A.1.2 Organisation de la Thèse

Le reste de la thèse est organisé comme décrit ci-dessous:

• Dans le Chapitre 2 nous examinons l’état de l’art appropriés à cette thèse.
Nous fournissons une description de la publications, des outils et des ex-
périences existantes présentées par le milieu universitaire et l’industrie.

• Dans le Chapitre 3 nous présentons une étude de cas de l’analyse de bout
en bout de la (in) sécurité des systèmes pyrotechniques sans fil. Nous
utilisons cette étude de cas comme un exemple de motivation pour notre
travail principal dans les chapitres suivants.

• Dans le Chapitre 4 nous présentons notre méthodologie et nous décrivons le
système d’analyse à grande échelle que nous avons implémenté. Egalement,
nous fournissons les premières indications sur les résultats et les défis d’une
telle recherche.

• Dans le Chapitre 5, basé sur le système que nous avons mis en place et
nous avons présenté, nous avons mis l’accent sur l’analyse des interfaces
web de dispositifs embarqués utilisant l’émulation du firmware combinée à
des techniques d’analyse statique et dynamique. Nous montrons comment
notre système peut être utilisé dans la pratique pour trouver rapidement de
nouvelles vulnérabilités dans les interfaces web de dispositifs embarqués.

Large Scale Security Analysis of Embedded Devices’ Firmware

http://firmware.re

110 A. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

• Dans le Chapitre 6 nous nous concentrons sur la classification automa-
tisée et précise des fichiers du firmware et les dispositifs embarqués en
ligne. Nous présentons notre expérience avec l’exploration des ensembles
possibles de caractéristiques et de mesures d’empreintes digitales. Nous
discutons également les applicataions de Machine Learning (ML) et des
techniques de fusion de scores multi-métriques pour la classification au-
tomatisé et précis à grande échelle.

• Enfin, le Chapitre 7 conclut la dissertation et présente d’autres améliora-
tions éventuelles pour cette thèse.

A.2 Exemple Motivant – Insécurité des Systèmes
Pyrotechniques Sans Fil

A.2.1 Introduction

Feux d’artifice et spectacles pyrotechniques sont essentiellement explosifs utilisés
principalement pour le divertissement. Un événement de feux d’artifice, égale-
ment appelé un spectacle pyrotechnique, est un affichage des effets produits par
les appareils du feux d’artifice. Les appareils du feux d’artifice sont conçus pour
produire des effets tels que le bruit, la lumière, la fumée, les matériaux flottante
(par exemple, des confettis). Les spectacles pyrotechniques et les appareils du
feux d’artifice sont contrôlées par des systèmes de mise à feu. Les systèmes de
mise à feu, en plus des feux d’artifice, sont souvent utilisés à d’autres fins, telles
que la démolition des bâtiments, des effets spéciaux, la formation militaire et la
simulation militaire.

Malgré le fait que des feux d’artifice sont prévus pour les fêtes, leur utilisation
est souvent associée à des risques élevés de destruction, des blessures et même
la mort. Beaucoup de nouvelles récente et des études de recherche montrent
les dangers de feux d’artifice [17, 172]. Parfois même des feux d’artifice sont
utilisés comme de vraies armes dans les combats de rue [33]. Accidents de feux
d’artifice sont souvent causés par une mauvaise manipulation du matériel, ne pas
suivre les règles de sécurité ou la faible qualité des artifices. Un autre facteur
aggravant est que les feux d’artifice sont généralement destinés à être affiché
dans les espaces publics qui sont surpeuplés. Tous ces accidents se produisent
malgré le contrôle strict de la distribution de feux d’artifice et la nécessité pour
une licence professionnelle pour gérer de tels dispositifs.

Classiquement les systèmes de mise à feu pour les feux d’artifice composent
de commutateurs mécaniques ou électriques et le câblage électrique (souvent
appelé “shooting wire”). Ce type de configuration est simple, efficace et rela-
tivement sûr [24]. Toutefois, il limite considérablement l’effet, la complexité et
les capacités des systèmes de feux d’artifice et des événements pyrotechniques.

Ph.D. Thesis — Andrei Costin

A.2. EXEMPLE MOTIVANT – INSÉCURITÉ DES SYSTÈMES PYROTECHNIQUES
SANS FIL 111

Les progrès de logiciels / firmware, dispositifs embarqués et des technologies
sans fil permet aux systèmes de feux d’artifice de profiter pleinement de ces
technologies. Un système (sans fil) de feux d’artifice moderne peut être consid-
éré comme un bon exemple d’un système cyber-physique embarqué (Embedded
Cyber-Physical System (ECPS)) ou réseau sans fil des capteurs/actionneurs
(Wireless Sensor/Actuator Network (WSAN)). Les systèmes de mise à feu des
feux d’artifice compter de plus en plus sur les technologies sans fil, embarqués et
de logiciels/firmware. Par conséquent, ils sont exposés aux mêmes risques que
tout autre ECPS, WSAN ou systèmes informatiques.

Basé sur des recherches récentes, systèmes d’infrastructures critiques et systèmes
embarqués de tous types acquis une mauvaise réputation en matière de sécurité.
Par exemple, les avions peuvent être falsifiés sur les nouveaux systèmes de surveil-
lance radar [76], le contrôle de la voiture peut être détourné [69, 148] ou peut
être exploitée à l’échec [126], une pompe à insuline implantée peut être com-
plètement attaqué [173] ou un réseau de contrôleurs logiques programmables
(Programmable Logic Controllers (PLC)) dans une installation nucléaire peut
être rendu non fonctionnel [109,150].

Dans ce chapitre, nous étudions les risques des systèmes de mise à feu du point
de vue de la sécurité des systèmes embarqués, des réseaux sans fil et sécurité
informatique. Nous détaillons notre expérience de découvrir et exploiter un sys-
tème de mise à feu sans fil dans un court laps de temps sans aucune connaissance
préalable de ces systèmes. En bref, nous démontrons notre méthodologie à partir
de l’analyse du firmware à la découverte de vulnérabilités. Notre analyse statique
a aidé notre décision d’acquérir un tel système qui nous avons analysé plus en
détail. Cela nous a permis de confirmer la présence de vulnérabilités exploita-
bles sur le périphérique réel. Enfin, nous insistons sur la nécessité de la sécurité
de l’appareil et le logiciel/firmware, et sur l’application de la conformité de la
sécurité pour les systèmes de mise à feu pyrotechniques.

A.2.2 Sommaire

Nous avons présenté la découverte de la vulnérabilité et l’exploitation des sys-
tèmes de mise à feu sans fil dans un court laps de temps sans connaissance
préalable de ces systèmes. Nous avons commencé avec un système automa-
tisé à grande échelle pour la récupération et l’analyse du firmware (détaillé
dans le Chapitre 4). Dans cette expérience, nous avons utilisé des heuristiques
simples (par exemple, mot-clé correspondant) et l’analyse statique très simple.
Cela nous a permis d’isoler rapidement et automatiquement les fichiers de firm-
ware des systèmes de mise à feu d’importance fondamentale. Nous avons égale-
ment été en mesure d’identifier plusieurs vulnérabilités potentielles en utilisant
l’analyse statique automatique et manuel. Ces vulnérabilités comprennent la mise
à jour de firmware non authentifié, les communications sans fil non authentifiés,

Large Scale Security Analysis of Embedded Devices’ Firmware

112 A. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

l’espionnage et les communications sans fil de type spoofing, injection de code
arbitraire, le déni de service temporaire. Nous avons implémenté et testé avec
succès une attaque simpliste avec des conséquences potentiellement dévastatri-
ces.

Nous concluons que, compte tenu du risque présenté par leur utilisation, la sécu-
rité des systèmes de mise à feu sans fil doit être prise très au sérieux. Nous conclu-
ons également que de tels systèmes doivent être plus rigoureusement réglementés
et certifiés. Nous insistons sur la nécessité et l’urgence d’introduire vérification
de la conformité des logiciels et du matériel similaire à DO-178B et DO-254,
respectivement. Nous croyons fermement ces petites étapes d’amélioration, ainsi
que des solutions à la Section 3.3.5, peut certainement contribuer à accroître la
sécurité et la sûreté de ces systèmes embarqués sans fil.

Dernier point, mais non des moindres, nous avons discuté des problèmes avec
le vendeur. Une mise à jour du firmware, qui est maintenant déployé, corrige
la plupart des les problèmes de sécurité. Malheureusement, il ya plus de 20
fournisseurs de systèmes pyrotechniques sans fil qui peuvent rester vulnérables
à des attaques similaires, en particulier certains d’entre eux ne disposent d’un
mécanisme de mise à jour du firmware.

Dans ce chapitre, nous avons démontré comment l’analyse de la sécurité peut être
effectuée sur un seul appareil en utilisant principalement une analyse manuelle.
Bien que cette analyse est très utile pour découvrir les problèmes de sécurité
graves dans les systèmes embarqués, cette approche est pas extensible. Dans
le reste de cette thèse, nous allons présenter les techniques pour automatiser
certaines des étapes du processus d’analyse de la sécurité pour dispositifs em-
barqués.

A.3 Analyse à Grande Échelle de la Sécurité des
Firmwares pour Dispositifs Embarqués

A.3.1 Introduction

Les systèmes embarqués sont omniprésents dans notre vie quotidienne et sont de
plus en de plus présents dans nombreux environnements informatiques en réseau.
Par exemple, ils sont à la base de divers dispositifs Common-Off-The-Shelf
(COTS) tels que les imprimantes, les routeurs, composants et périphériques pour
ordinateurs. Ils sont également présents dans de nombreux dispositifs qui sont
moins axées sur les consommateurs tels que les systèmes de surveillance vidéo, les
implants médicaux, des éléments de voiture, systèmes industriels SCADA et PLC,
et pratiquement tout ce que nous appelons communément les appareils élec-
troniques. Le phénomène émergent de l’Internet des objets (Internet-of-Things
(IoT)) va rendre ces systèmes encore plus communs et interconnectés.

Ph.D. Thesis — Andrei Costin

A.3. ANALYSE À GRANDE ÉCHELLE DE LA SÉCURITÉ DES FIRMWARES
POUR DISPOSITIFS EMBARQUÉS 113

Tous ces systèmes exécutent un logiciel spécial, souvent appelé firmware, qui
est généralement distribué par les fournisseurs comme des fichiers de firmware
ou des mises à jour firmware. Plusieurs définitions de firmware existent dans
la literature. Le terme a été introduit à l’origine pour décrire le microcode du
processeur (CPU) qui existait “quelque part entre” les couches de matériel et le
logiciel. Cependant, le mot a rapidement acquis un sens plus large. La norme
IEEE 610.12-1990 [35] étendu la définition de couvrir le “combinaison d’un dis-
positif de matériel informatique et instructions ou des données qui résident sur
le périphérique matériel comme logiciel en lecture seule”.

À l’heure actuelle, le terme firmware est plus généralement utilisé pour décrire
le logiciel qui est incorporé dans un dispositif matériel. Comme les logiciels tradi-
tionnels, firmware pour dispositifs embarqués peut avoir des bugs ou des erreurs
de configuration qui peuvent entraîner des vulnérabilités pour les dispositifs qui
exécutent ce code particulier. Basé sur des preuves anecdotiques, les systèmes
embarqués ont acquis une mauvaise réputation en matière de sécurité, générale-
ment basé sur cas par cas des expériences d’échecs. Par exemple, la commande
de l’accélérateur d’une voiture échoue [126] ou peuvent être malicieusement
détourné [69, 148]; un routeur domestique sans fil se trouve à avoir une back-
door [36,121,132], pour ne citer que quelques exemples récents. D’une part, en
dehors de quelques projets qui ciblé des dispositifs ou des versions de logiciels
spécifiques [82, 116, 181], à ce jour il n’y a toujours pas d’analyse de sécurité
à grande échelle de fichiers du firmware. D’autre part, l’analyse manuel de la
sécurité des fichiers du firmware rendements des résultats très précis, mais il
est extrêmement lent et n’est pas évolutive pour un ensemble de données vaste
et hétérogène des fichiers du firmware. Aussi utile que ces rapports individu-
els sont pour un dispositif ou la version de firmware particulier, ces rapports
seuls ne permettent pas d’établir un jugement général sur l’état général de la
sécurité du firmware. Pire encore, la même vulnérabilité peut être présent dans
des dispositifs différents, qui sont laissées vulnérables jusqu’à ce que ces dé-
fauts sont re-découvert indépendamment par d’autres chercheurs [132]. Ceci
est souvent le cas lorsque plusieurs fournisseurs d’intégration compter sur les
mêmes sous-traitants, des outils, des kits de développement logiciel ou fournies
par fournisseurs de développement . De nombreux appareils peuvent aussi être
marqués sous des noms différents, mais peuvent effectivement exécuter la même
ou similaire firmware. De tels dispositifs sont souvent affectés par exactement
les mêmes vulnérabilités, cependant, sans une connaissance approfondie des re-
lations internes entre les fournisseurs, il est souvent impossible d’identifier ces
similitudes. En conséquence, certains appareils sont souvent laissés affectés par
les vulnérabilités connues, même si une mise à jour firmware est disponible.

Contributions

En bref, ce chapitre apporte les contributions suivantes:

Large Scale Security Analysis of Embedded Devices’ Firmware

114 A. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

• Nous démontrons les avantages d’effectuer une analyse à grande échelle de
firmware fichiers et nous décrivons les principaux défis liés à cette activité.
• Nous proposons un système pour effectuer des prélèvements de firmware,

le filtrage, le déballage et l’analyse à grande échelle.
• Nous avons mis plusieurs techniques statiques efficaces que nous avons

appliquées sur 32, 356 fichiers firmware.
• Nous présentons une technique de corrélation qui permet de propager les

informations de vulnérabilité aux fichiers du firmware similaires.
• Nous avons découvert 693 fichiers de firmware touchés par au moins une

vulnérabilité et nous avons signalé 39 nouveaux vulnérabilité (Common
Vulnerabilities and Exposures (CVE)).

A.3.2 Sommaire

Dans ce chapitre, nous avons présenté une analyse statique à grande échelle
de fichiers de firmware pour dispositifs embarqués. Nous avons montré que une
vue plus large sur le firmware non seulement est bénéfique mais également est
effectivement nécessaire pour la découverte et l’analyse des vulnérabilités des
dispositifs embarqués. Notre étude aide les chercheurs et les analystes de sécurité
de mettre la sécurité des dispositifs particuliers dans leur contexte, et leur permet
de voir comment les vulnérabilités connues qui se produisent dans un firmware
réapparaissent dans le firmware des autres fabricants. Les ensembles de données
résumées sont disponibles à http://firmware.re/usenixsec14.

Dans les deux prochains chapitres suivants, nous décrivons plusieurs améliora-
tions à notre système. Dans le Chapitre 5, nous essayons d’émuler le fichiers du
firmware en exécutant le firmware désarchivée l’intérieur de l’émulateur QEMU.
Nous faisons cela pour permettre une analyse statique et dynamique évolutive.
Nous montrons l’efficacité de l’amélioration en effectuant une analyse évolu-
tive des interfaces web au sein de plusieurs centaines de fichiers du firmware.
Ensuite, dans le Chapitre 6, nous appliquons Machine Learning (ML) pour clas-
sifier et étiqueter les fichiers du firmware inconnus. Nous utilisons également des
multi-score de fusion pour la classification des empreintes digitales au niveau du
HTTP de dispositifs embarqués en ligne. Grâce à ces améliorations, nous adres-
sons partiellement les défis de “Construire un ensemble de données représentant”,
“Identification du firmware”, “Limites d’évolutivité et de calcul” et “Confirmation
des résultats” tel que présenté dans la Section 4.2.

Ph.D. Thesis — Andrei Costin

http://firmware.re/usenixsec14

A.4. ANALYSE DYNAMIQUE DE FIRMWARE À GRANDE ÉCHELLE: UNE
ÉTUDE DE CAS SUR LES INTERFACES WEB DE DISPOSITIFS EMBARQUÉS 115

A.4 Analyse Dynamique de Firmware à Grande Échelle:
Une Étude de Cas sur les Interfaces Web de
Dispositifs Embarqués

A.4.1 Introduction

Au cours des quelques dernières années, les appareils embarqués sont devenus
plus connecté formant ce qu’on appelle l’Internet des objets (IdO, IoT). Ces dis-
positifs sont souvent mis en ligne par la composition; la fixation d’une interface de
communication à un dispositif (non sécurisé) existant. La plupart de ces disposi-
tifs manquent de l’interface utilisateur des ordinateurs de bureau (par exemple,
clavier, vidéo, souris), mais doivent néanmoins être administré. Quoique certains
dispositifs reposent sur des protocoles personnalisés tels que clients “thick” ou
même les interfaces existantes (à savoir, telnet), le web est rapidement devenu
“de facto” le interface universelle d’administration. Par conséquent, le firmware
de ces appareils a souvent intégré un serveur web qui exécute des applications
web simples à assez complexes. Pour le reste de ce chapitre, nous allons nous
référer à ces comme interfaces web de dispositifs embarqués.

Il est bien connu que la sécurisation des applications web est une tâche difficile.
En particulier, les chercheurs ont montré que plus de 70% des vulnérabilités sont
hébergés dans la couche des applications (web) [171]. Les attaquants, qui sont
familiers avec cette réalité, ils utilisent une variété de techniques pour exploiter
des applications web. Vulnérabilités bien connues, telles que SQLinjection [62]
ou Cross Site Scripting (XSS) [199], sont encore fréquemment exploités et con-
stituent une partie importante des vulnérabilités découvert chaque année [71].
En outre, les vulnérabilités telles que Cross Site Request Forgery (CSRF) [45],
command injection [188], et HTTP response splitting [142] sont également très
souvent présent dans les applications web.

Compte tenu d’un tel palmarès des problèmes de sécurité dans les systèmes
embarqués et les applications web, il est naturel de s’attendre à la pire des
interfaces web de dispositifs embarqués. Cependant, comme nous le verrons, ces
vulnérabilités ne sont pas faciles à découvrir, analyser et confirmer.

Vue d’Ensemble de Notre Approche

Afin d’effectuer des tests scalable de la sécurité des interfaces web de dispositifs
embarqués, nous avons développé un système d’analyse automatisé (Figure 5.1).
Nous avons commencé notre analyse par un ensemble de données de 1925 fichiers
de firmware qui ont été précédemment décompressé 1 qui contiennent des inter-
faces web. Ensuite, pour chaque firmware déballé nous identifions des structures

1 Nous nous sommes concentrés principalement sur les fichiers du firmware basé sur
Linux. Fichiers du firmware basé sur Linux sont en général bien structuré et documenté,

Large Scale Security Analysis of Embedded Devices’ Firmware

116 A. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

de documents web potentiels présents à l’intérieur du firmware. À ce stade, nous
faisons une passe avec des outils d’analyse statique sur les structures de docu-
ments web. Ensuite, nous effectuons l’émulation des fichiers du firmware. Quand
(et si) le serveur web est en fonctionnement, la phase d’analyse dynamique est
effectué. Enfin, nous analysons les résultats et effectuer une analyse manuelle
chaque fois que nécessaire.

Contributions

En bref, ce chapitre fait les contributions suivantes:

• Nous effectuons la première étude complète de sécurité sur les interfaces
web de dispositifs embarqués, à grande échelle. Nous faisons cela en misant
sur plusieurs techniques et outils de état de l’art.
• Nous détaillons une partie de firmware précédemment non étudiée, et nous

découvrons de sérieuses vulnérabilités dans un large spectre de dispositifs
embarqués.
• Nous proposons une méthodologie efficace et nous développons un système

scalable pour aborder la détection de vulnérabilités dans les interfaces web
de dispositifs embarqués.
• Nous permettons un banc d’essai pour de nouvelles recherches de sécurité

avancée sur le firmware des systèmes embarqués.

A.4.2 Sommaire

Dans ce chapitre, nous avons présenté une nouvelle méthode pour effectuer une
analyse à grande échelle de la sécurité des interfaces web au sein de dispositifs
embarqués. À cette fin, nous avons conçu un système qui utilise des logiciels
de série pour l’analyse statique et dynamique. En raison des limitations dans
les outils d’analyse statique, nous avons créé un mécanisme pour l’émulation
automatique des fichiers de firmware. Alors que l’émulation du matériel par-
faitement inconnue restera probablement une question ouverte, nous étions en
mesure d’émuler les systèmes assez bien pour tester les interfaces web de 246
fichiers de firmware. Notre système a trouvé de sérieuses vulnérabilités dans au
moins 24% des interfaces web que nous étions en mesure d’émuler. En incluant
la phase d’analyse statique, 9290 problèmes ont été trouvées sur un total de 185
fichiers de firmware. Ceci comprend 225 vulnérabilités à impact élevé que nous
avons pu vérifier.

Enfin, nos expériences et les résultats confirment que la sécurité d’un grand
nombre de ces dispositifs est sérieusement défaut. Nous visons donc à l’exécution

par conséquent, ils sont plus faciles à déballer, analyser et emuler. Cependant, notre approche
peut être facilement étendu à l’avenir à d’autres types de firmware, y compris les firmwares
monolithiques.

Ph.D. Thesis — Andrei Costin

A.5. CLASSIFICATION DES FIRMWARE ET L’IDENTIFICATION DES
APPAREILS EMBARQUÉS DANS UNE MANIÈRE SCALABLE 117

de ce système comme un processus continu. Cela peut aider à améliorer la qualité
et de continuer à trouver des vulnérabilités dans ces dispositifs embarqués, en
espérant qu’ils seront corrigés par les vendeurs. Un tel service pourrait également
être utile aux fournisseurs de dispositifs embarqués qui peuvent bénéficier de tests
de sécurité automatique avant d’expédier leurs produits. Nous espérons que notre
système peut aider à rendre l’Internet et l’IoT plus sûr et sécurisé.

A.5 Classification des Firmware et l’Identification
des Appareils Embarqués Dans une Manière
Scalable

A.5.1 Introduction

Un fichier du firmware est, en général, fait sur mesure pour un dispositif em-
barquée spécifique, et un modèle d’appareil contient et exécute un fichier de
firmware particulier. Cela est relativement facile pour une personne à suivre lors
de l’analyse manuelle (par exemple, le processus de mise à jour du firmware).
Cependant, parce que les appareils embarqués sont si diverses, il est pas trivial
pour les ordinateurs et les systèmes automatisés pour relier un modèle d’appareil
embarqué et un fichier du firmware.

Par exemple, lorsque téléchargement manuellement un fichier de firmware à par-
tir d’un site du fournisseur, il est souvent relativement facile pour une personne
de connaître le vendeur et le périphérique pour lequel le firmware est destiné.
Cependant, pour un système automatisé qui télécharge des milliers de fichiers du
firmware à partir de sites non structurées, il est pas une tâche triviale pour clas-
sifier les fichiers du firmware par classe de périphérique ou même par le vendeur.
Nous avons identifié et décrit ce problème comme le défi de la “Identification du
Firmware” dans le Chapitre 4.

Problèmes Ouverts

Dans ce contexte, nous avons identifié et nous avons formulé deux problèmes
comme suit: Tout d’abord, comment étiqueter automatiquement et avec pré-
cision la marque et le modèle de l’appareil pour lequel le firmware est des-
tiné. Deuxièmement, comment identifier automatiquement et avec précision le
vendeur, le modèle et la version du firmware d’un dispositif embarqué arbitraire
en ligne.

Ces mesures doivent être effectuées d’une manière fiable, indépendant du dis-
positif, le vendeur, ou des protocoles personnalisés qui exécutent sur l’appareil.

Large Scale Security Analysis of Embedded Devices’ Firmware

118 A. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

Vue d’Ensemble de Notre Approche

Dans notre méthode, nous appliquons Machine Learning (ML) pour classifier les
fichiers du firmware selon les fournisseurs des dispositifs embarqués et des types
de tels dispositifs. Nous utilisons deux algorithmes largement adoptés, Random
Forests (RF) et Decision Trees (DT), sur la base de leur mise en œuvre dans le
logiciel scikit-learn [168]. Nous explorons plusieurs ensembles de caractéris-
tiques dérivées des caractéristiques des fichiers du firmware, tels que la taille du
fichier, l’entropie du fichier et les chaînes de caractères communes. Ensuite, nous
recommandons les caractéristiques optimales définies pour ce type de problèmes
de classification et montrent que notre approche permet d’obtenir une grande
précision de la classification. En outre, en utilisant des méthodes statistiques
solides tels que les intervalles de confiance, nous estimons la performance de nos
classificateurs pour des données réelles à grande échelle.

Nous recueillons alors empreintes digitales des interfaces web sur les périphériques
réels et sur les périphériques émulés basés sur les fichiers du firmware précédem-
ment classifiés. Nous construisons une base de données d’empreintes digitales
sur la base de ces périphériques émulés et réels. Ensuite, nous pouvons corre-
spondre interfaces web d’un appareil embarqué inconnue à la liste des empreintes
digitales web connus dans notre base de données en utilisant plusieurs métriques
correspondants, tels que le plan du site (sitemap) ou le Finite-State Machine
(FSM) du protocole HTTP. Enfin, nous utilisons plusieurs systèmes de notation
pour classifier les correspondances d’empreintes digitales.

Contributions

En bref, ce chapitre fait les contributions suivantes:

• Nous appliquons Machine Learning (ML) dans le contexte de la classifica-
tion des fichiers du firmware, et nous proposons et étudions les caractéris-
tiques du firmware qui rend cela possible.
• Nous montrons que l’utilisation de Machine Learning (ML) permet de

classifier automatiquement des ensembles de fichiers du firmware avec une
grande précision.
• Nous étudions la prise d’empreintes digitales et d’identification des disposi-

tifs embarqués et leur version du firmware en utilisant des empreintes digi-
tales multi-métrique des interfaces web de dispositifs embarqués (physiques
et émulé).

A.5.2 Sommaire

Dans ce chapitre, nous avons présenté deux techniques complémentaires, à savoir
classification supervisée des fichiers du firmware et identification par em-

Ph.D. Thesis — Andrei Costin

A.6. CONCLUSIONS 119

preintes digitales des interfaces web de dispositifs embarqués. Nous avons
proposé Machine Learning (ML) pour le défi de la classification des firmwares
et nous avons exploré la fusion multi-métrique de scores pour le problème de
l’identification des interfaces web de dispositifs embarqués. Avec une grande con-
fiance pour les données réel et à grande échelle, nos tests démontrent que les clas-
sificateurs et caractéristiques nous proposons peut atteindre la précision de 93.5%
pour la classification du firmware et la précision de 89.4% pour l’identification
des dispositifs embarqués.

A.6 Conclusions

Cette thèse a présenté de nouvelles techniques pour automatiser l’analyse à
grande échelle de la sécurité du logiciel dans les systèmes embarqués et de leur
firmware. Nous avons mis ces techniques dans un système complète et validée son
efficacité avec des données réelles (i.e., les fichiers de firmware et les dispositifs
embarqués en ligne).

Nous avons commencé le voyage de cette thèse avec un système simple mais
efficace. Les modules de téléchargement de notre système collectées efficacement
les fichiers du firmware pour des fins d’analyse ultérieure. Nous avons utilisé les
robots simples basées sur une combinaison de “site scrapers”, les requêtes de
recherche personnalisé et téléchargeurs de fichiers à partir des pages de support
technique. Nous avons pu recueillir 172k fichiers de firmware potentiels. Nos
estimations ultérieures ont montré que, avec un confiance de 95% il devrait y
avoir au moins 34% ± 8% de véritables fichiers de firmware dans notre ensemble
de données. Cette base de données alors nécessaire déballage et analyse de la
sécurité. Les modules de déballage de notre système sont basées sur une extension
personnalisée de Binary Analysis Toolkit (BAT) , mais il peut aussi être facilement
étendu à l’avenir avec d’autres systèmes de déballage, par exemple, binwalk.
Même si les modules déballage ne peuvent pas encore garantir déballage complet
de tout firmware, ils déballés environ 75% des fichiers du firmware traitées.
En fin de compte, les modules d’analyse statique simples nous ont permis de
trouver 38 nouvelles vulnérabilités dans 693 fichiers du firmware. Par exemple,
ces modules font analyse de mots de passe faibles en /etc/passwd, ils recueillent
et ils suivent les clés privées en ligne (SSL, SSH), et ils vérifient les erreurs de
configuration de sécurité simples et les backdoors évidentes. Ces expériences
nous ont permis d’identifier cinq défis importants associés à l’analyse à grande
échelle de la sécurité du firmware des dispositifs embarqués. Par ailleurs, certains
défis ont été fortement liée à des zones insuffisamment étudiés que nous avons
exploré avec succès par la suite.

Nous avons ensuite amélioré notre système par l’introduction de l’analyse sta-
tique et dynamique automatisé et à grande échelle des interfaces web de disposi-
tifs embarqués. L’approche est basée sur l’émulation des systèmes de fichiers

Large Scale Security Analysis of Embedded Devices’ Firmware

120 A. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

de firmwares (extrait lors du déballage des fichiers du firmware), d’une manière
distribuée et indépendant de l’architecture. Nous avons aussi développé et util-
isé un ensemble d’heuristiques automatisés pour augmenter la réussite tant de
l’émulation du firmware et du lancement de l’interface web de dispositifs embar-
qués. Dès que les interfaces web de dispositifs embarqués sont lancés, notre sys-
tème applique des outils d’analyse statique et dynamique sur eux. Notre système
entièrement automatisé découvert en seulement quelques heures vulnérabilités à
impact élevé (par exemple, injection de commandes, XSS) dans au moins 20%
des interfaces web émulés de dispositifs embarqués. Dans le même temps, il pour-
rait automatiquement émuler les interfaces web de dispositifs embarqués dans
les 15% des fichiers du firmware contenant des interfaces web. L’augmentation
de ces taux de réussite de manière automatisée et intelligente est un défi que
nous voulons aborder dans nos travaux futurs. Notre approche est flexible ce
qui signifie que de nouvelles techniques d’émulation et d’analyse peuvent être
facilement ajoutés dans le futur. En outre, si l’on sait maintenant que de nom-
breux dispositifs embarqués ne sont pas sécurisés, notre système est vraiment la
première démonstration de la possibilité de pleinement et faisable automatiser
l’analyse dynamique du firmware hétérogène de dispositifs embarqués à grande
échelle.

Enfin, nous avons amélioré notre système avec l’intelligence supplémentaire en
employant Machine Learning (ML) et des techniques de classification. Pour clas-
sifier les fichiers du firmware, nous avons exploré les algorithmes de Random
Forests (RF) et Decision Trees (DT) en combinaison avec plusieurs ensembles
de caractéristiques. Sur notre ensemble de données du firmware, nous avons mon-
tré que l’algorithme de RF avec les caractéristiques [size, entropy, entropy
extended, category strings, category unique strings] est le meilleur
choix parmi les quatre principaux ensembles de fonctionnalités que nous ex-
plorées. Par exemple, notre système atteint plus de 90% de précision de la clas-
sification lorsque les ensembles de formation ont été basées sur au moins 40%
de chaque catégorie de firmware connu. Pour classifier les dispositifs embarqués
en ligne, nous avons exploré les empreintes digitales des interfaces web en util-
isant des techniques de fusion multi-métrique de scores. Notre système repose
sur les empreintes digitales des interfaces web de dispositifs embarqués, calculé
sur six métriques. Ensuite, il classe les métriques d’empreintes digitales à l’aide
de trois systèmes d’évaluation, et utilise la technique de la fusion des scores dans
l’évaluation finale de la meilleure correspondance des empreintes digitales. Nous
avons aussi raisonnablement motivés nos choix pour les métriques et les systèmes
d’évaluation dans le cadre d’interfaces web de dispositifs embarqués. Par exem-
ple, en moyenne, notre système atteint 89.4% de précision dans l’identification
de l’appareil en utilisant une base de données de 31 empreintes digitales des
interfaces web de dispositifs embarqués. Enfin, nous avons démontré qu’il est
possible de classifier les fichiers de firmware et d’identifier dispositifs embarqués
en ligne avec une grande précision.

Ph.D. Thesis — Andrei Costin

A.6. CONCLUSIONS 121

A.6.1 Les Travaux Ultérieurs

Les travaux ultérieurs sera axée sur la construction d’ensembles de données pro-
pres, annotées et représentatives de fichiers du firmware et d’émulations de dis-
positifs. Par exemple, ces ensembles de données pourraient être utilisés par les
praticiens comme données “vérité-terrain” (“ground truth”) pour les expériences
ultérieures. Cela permettrait d’évaluer l’efficacité et l’efficience de nouvelles tech-
niques visant à découvrir des vulnérabilités dans les systèmes embarqués et de
leur firmware. En outre, cela permettrait une comparaison juste et raisonnable
entre les différentes techniques et approches.

Une autre amélioration prévue pour les travaux futurs consiste à exploiter un
mécanisme de CAPTCHA pour construire de manière incrémentale un ensemble
bien marqué de fichiers du firmware pour former les classificateurs de Machine
Learning (ML). Par exemple, les fichiers de firmware non classés pourraient être
présentées aléatoirement pour la classification à plusieurs utilisateurs de notre
service en ligne http://firmware.re. Pour la validation croisée de la réponse
des utilisateurs, un fichier du firmware avec un bon label connu est également
présentée comme un défi aux utilisateurs ainsi que ceux non classés. Un défi
dans ce processus pourrait être la conception d’une représentation visuelle con-
vaincante des fichiers du firmware présentés aux utilisateurs. Finalement, fois
que un fichier de firmware non classés atteint un seuil de classification dans une
catégorie particulière, il est ajouté à l’ensemble de données d’entraînement sous
l’étiquette de la catégorie.

Nous prévoyons également de développer des outils et des techniques pour
l’analyse statique qui sont nouveaux, avec un accent particulier sur leurs ap-
plications à la sécurisation des programmes dans les fichiers du firmware. Par
exemple, ceux-ci pourraient être des outils d’analyse statique pour les technolo-
gies du web qui ne sont pas bien couverts par l’état de l’art, tels que Lua ou
Haserl. Dans d’autres cas, ceux-ci pourraient être des méthodes d’analyse sta-
tique binaires pour la myriade d’architectures CPU moins communs trouvés dans
les dispositifs embarqué et dans les dispositifs de l’IoT.

Enfin, nous prévoyons de développer, déployer et surveiller “honeypots” robustes
et réalistes au maximum émulant dispositifs embarqué hétérogènes. Cela per-
mettrait de capturer et d’analyser à des stades précoces de nouvelles menaces,
les exploits et les logiciels malveillants qui ciblent un large éventail de dispositifs
embarqués et de dispositifs pour l’IoT.

Large Scale Security Analysis of Embedded Devices’ Firmware

http://firmware.re

Ethical Aspects

Large-scale scans testing for the presence of vulnerabilities often raise serious
ethical concerns. Even simple Internet-wide network scans may trigger alerts
from Intrusion Detection Systems (IDS) and may be perceived as an attack by
the scanned networks.

In our study we were particularly careful to work within legal and ethical bound-
aries. Below we summarize the steps we took to ensure that we do not inadver-
tently cross those boundaries.

• We obtained firmware images either through user submission or through
legitimate distribution mechanisms. In this case, our web crawler was de-
signed to obey the robots.txt directives.

• We strictly followed the responsible disclosure policy. In this regard, we
tried our best to notify vendors, CERTs and Vulnerability Contribution
Programs (VCP) for vulnerabilities we discovered during our experiments.
We also tried to assist vendors in reproducing these issues.

• We did not involve any device in our main methodology. This avoids both
accessing devices we did not own and breaching terms of use. Also, there
was no risk to interfere unintentionally with devices which were not under
our control or to “brick” an actual device. In limited cases when confirma-
tion of an issue required a physical device, we performed such validations
on devices under our control and in an isolated test environment.

• Finally, the license of some firmware images may not allow redistribution.
Therefore, the public web submission interface limits the ability to ac-
cess firmware contents only to the users who uploaded the corresponding
firmware image. Other users can only access anonymized reports. We are
currently investigating ways to make the full dataset available for research
purposes to well identified research institutions.

123

List of Figures

3.1 Generic diagram and components of a wireless firing system. . . 21

3.2 Remote control module’s hardware. 26

3.3 Firing module’s hardware. 27

4.1 Architecture of the entire system. 40

4.2 Architecture of a single worker node. 45

4.3 OS distribution among firmware images. 50

4.4 Correlation engine and shared self-signed certificates clustering. 54

4.5 Fuzzy hash clustering and vulnerability propagation. A vulnera-
bility was propagated from a seed file (*) to other two files from
the same firmware and three files from the same vendor (in red)
as well as one file from another vendor (in orange). Also four
non-vulnerable files (in green) have a strong correlation with vul-
nerable files. Edge thickness displays the strength of correlation
between files. 56

5.1 Overview of the analysis framework. 59

5.2 Various possible options to launch a web interface: from perfect
emulation of a hardware platform to hosting the web interface.
Arrows are indicative of a general trend, actual evolution of the
properties may not be linear. 63

5.3 Overview of one analysis environment for Linux armel with a 2.6
kernel. 69

5.4 Architectural chroot analysis setup. 70

6.1 Derivation and assignment of strings-based features. 83

6.2 Firmware classification performance using [size, entropy] feature
set of the firmware files. 85

125

126 LIST OF FIGURES

6.3 Firmware classification performance using [size, entropy, entropy
extended] feature set of the firmware files. 86

6.4 Firmware classification performance using [size, entropy, entropy
extended, strings, strings unique] feature set of the firmware files. 87

6.5 Firmware classification performance using [size, entropy, entropy
extended, strings, strings unique, fuzzy hash] feature set of the
firmware files. 88

6.6 End-to-end process where our firmware classification and device
identification techniques are applied. 97

Ph.D. Thesis — Andrei Costin

List of Tables

4.1 Comparison of Binwalk, BAT, FRAK and our framework. The last
three columns show if the respective unpacker was able to extract
the firmware. Note that this is a non statistically significant sam-
ple which is given for illustrating unpacking performance (manual
analysis of each firmware is time consuming). As FRAK was not
available for testing, its unpacking performance was estimated
based on information from [81]. The additional performance of
our framework stems from the many customizations we have in-
crementally developed over BAT (Figure 4.2). 44

5.1 Firmware counts at various phases of the dynamic analysis of
embedded web interfaces. 72

5.2 Distribution of architectures and their emulation success rates. . 72

5.3 Distribution of web servers types among the 246 instances which
successfully started a web server. 73

5.4 Distribution of web technologies within the 246 instances which
started a web server. 73

5.5 Distribution of PHP vulnerabilities reported by RIPS static ana-
lysis. NOTE: For TP, FP, FN rates of each vulnerability type
see Table Evaluation results for popular real-world applications
in [85]. 74

5.6 Distribution of dynamic analysis vulnerabilities. NOTE: The count
of vulnerabilities followed by “†” is not used elsewhere in this
chapter when we mention a total number of vulnerabilities found.
This is because they are known for very high false positive rates
and low severity. 75

5.7 Distribution of vulnerabilities found by manual analysis (Sec-
tion 5.3.5). NOTE: firmware images relate to similar products
of one particular vendor. 75

127

128 LIST OF TABLES

5.8 Distribution of network services opened by 207 firmware instances
out of 488 successfully emulated ones. The last entry summarizes
the 16 unusual port numbers opened by services such web servers. 76

Ph.D. Thesis — Andrei Costin

Bibliography

[1] https://github.com/travisgoodspeed/goodfet. 28

[2] http://w3techs.com/technologies/overview/programming_
language/all. 61

[3] http://samate.nist.gov/index.php/Source_Code_Security_
Analyzers.html. 61

[4] http://projects.webappsec.org/w/page/61622133/
StaticCodeAnalysisList. 61

[5] http://rips-scanner.sourceforge.net. 61

[6] http://code.google.com/p/rough-auditing-tool-for-security.
61

[7] http://www.scovetta.com/yasca.html. 61

[8] http://www.arachni-scanner.com/. 62

[9] https://code.google.com/p/zaproxy/. 62

[10] http://w3af.org/. 62

[11] http://owasp.org/index.php/Top_10_2013-A1-Injection. 62

[12] http://www.darrinhodges.com/chroot-voodoo/. 66

[13] http://justniffer.sourceforge.net/. 71

[14] http://nmap.org. 75

[15] Atmel AppNote AVR411: Secure Rolling Code Algorithm for Wireless Link.
22

[16] Audit PHP Configuration Security Toolkit. 55

[17] California Fireworks Display Goes Horribly Wrong: Dozens injured by catas-
trophic misfire during Simi Valley Fourth of July. ABCNews, 5th July 2013.
19, 110

129

https://github.com/travisgoodspeed/goodfet
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://projects.webappsec.org/w/page/61622133/StaticCodeAnalysisList
http://projects.webappsec.org/w/page/61622133/StaticCodeAnalysisList
http://rips-scanner.sourceforge.net
http://code.google.com/p/rough-auditing-tool-for-security
http://www.scovetta.com/yasca.html
http://www.arachni-scanner.com/
https://code.google.com/p/zaproxy/
http://w3af.org/
http://owasp.org/index.php/Top_10_2013-A1-Injection
http://www.darrinhodges.com/chroot-voodoo/
http://justniffer.sourceforge.net/
http://nmap.org

130 BIBLIOGRAPHY

[18] CVE-2007-1435, CVE-2011-4821. 75

[19] CVE-2010-2965, CVE-2014-0659. 75

[20] CVE-2014-4880, CVE-2013-1606. 75

[21] CVE-2014-9222. 75

[22] Define of backdoor string in DLink DI-524 UP GPL source code. https:
//gist.github.com/ccpz/6960941. 52

[23] Econotag. http://redwire.myshopify.com/. 29

[24] Fireworks Electric (Wired) Firing Systems. http://www.skylighter.
com/fireworks/how-to/setup-electric-firing-systems.asp. 19,
22, 110

[25] Google Custom Search Engine API. 42

[26] Internet Census 2012 – Port scanning /0 using insecure embedded devices.
http://internetcensus2012.bitbucket.org. 7, 8

[27] KillerBee; Framework and tools for exploiting ZigBee and IEEE 802.15.4
networks. http://code.google.com/p/killerbee/. 29

[28] Microchip SST25VF032B Flash Chip Datasheet. 25

[29] Motorola ColdFire MCF52254 Processor Datasheet. 25

[30] NFPA 79: Electrical Standard for Industrial Machinery. http://www.
nfpa.org/79. 22

[31] Synapse Module Comparison Chart. http://content.solarbotics.
com/products/documentation/synapse_comparison_table.pdf. 24,
26

[32] Synapse SNAP Network Operating System – Reference Manual, v2.4,
2012. 26

[33] Ukraine protests: Kiev fireworks ’rain on police’. http://www.bbc.com/
news/world-europe-25820899. 19, 110

[34] USB Snap Stick SS200. https://www.synapse-wireless.com/
snap-components/usb-mesh-snap-stick. 25, 28

[35] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std
610.12-1990, pages 1–84, 1990. 33, 113

[36] Slashdot: Backdoor found in TP-Link routers, March 2013. 1, 34, 106,
113

Ph.D. Thesis — Andrei Costin

https://gist.github.com/ccpz/6960941
https://gist.github.com/ccpz/6960941
http://redwire.myshopify.com/
http://www.skylighter.com/fireworks/how-to/setup-electric-firing-systems.asp
http://www.skylighter.com/fireworks/how-to/setup-electric-firing-systems.asp
http://internetcensus2012.bitbucket.org
http://code.google.com/p/killerbee/
http://www.nfpa.org/79
http://www.nfpa.org/79
http://content.solarbotics.com/products/documentation/synapse_comparison_table.pdf
http://content.solarbotics.com/products/documentation/synapse_comparison_table.pdf
http://www.bbc.com/news/world-europe-25820899
http://www.bbc.com/news/world-europe-25820899
https://www.synapse-wireless.com/snap-components/usb-mesh-snap-stick
https://www.synapse-wireless.com/snap-components/usb-mesh-snap-stick

BIBLIOGRAPHY 131

[37] Download statistics for the wemo android application, February 2014.
http://xyo.net/android-app/wemo-JJUZgf8/. 52

[38] Download statistics for the wemo iOS application, February 2014. http:
//xyo.net/iphone-app/wemo-J1QNimE/. 52

[39] P. Alvarez. Using Extended File Information (EXIF) File Headers in Digital
Evidence Analysis. International Journal of Digital Evidence, 2(3):1–5,
2004. 15

[40] K. Andersson and P. Szewczyk. Insecurity by obscurity continues: are adsl
router manuals putting end-users at risk. 2011. 11

[41] ANONYMIZED. ANONYMIZED (under submission). 98

[42] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG: Automatic
Exploit Generation. In ISOC Network and Distributed System Security
Symposium (NDSS), 2011. 71

[43] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario. Automated Classification and Analysis of Internet Malware.
In International Symposium on Recent Advances in Intrusion Detection
(RAID), RAID’07, pages 178–197, Berlin, Heidelberg, 2007. Springer-
Verlag. 2, 17, 107

[44] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Saner: Composing Static and Dynamic Analysis to Validate
Sanitization in Web Applications. In IEEE Symposium on Security and
Privacy, 2008. 14, 55, 58

[45] A. Barth, C. Jackson, and J. C. Mitchell. Robust Defenses for Cross-Site
Request Forgery. In ACM Conference on Computer and Communications
Security (CCS), 2008. 57, 115

[46] Z. Basnight, J. Butts, J. L. Jr., and T. Dube. Firmware modification
attacks on programmable logic controllers. International Journal of Critical
Infrastructure Protection, 6(2):76 – 84, 2013. 10

[47] L. Bass, N. Brown, G. M. Cahill, W. Casey, S. Chaki, C. Cohen, D. de Niz,
D. French, A. Gurfinkel, R. Kazman, et al. Results of CMU SEI Line-
Funded Exploratory New Starts Projects. 2012. 16, 47

[48] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the Art: Auto-
mated Black-Box Web Application Vulnerability Testing. In IEEE Sympo-
sium on Security and Privacy, 2010. 14, 58, 62

[49] T. Baume. Netcomm nb5 botnet–psyb0t 2.5 l. Technical report, Technical
report, January 2009. http://www. adam. com. au/bogaurd/PSYB0T.
pdf, 2009. 1, 11, 106

Large Scale Security Analysis of Embedded Devices’ Firmware

http://xyo.net/android-app/wemo-JJUZgf8/
http://xyo.net/iphone-app/wemo-J1QNimE/
http://xyo.net/iphone-app/wemo-J1QNimE/

132 BIBLIOGRAPHY

[50] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda.
Scalable, Behavior-Based Malware Clustering. In ISOC Network and Dis-
tributed System Security Symposium (NDSS), NDSS ’09. The Internet
Society, 2009. 17

[51] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel. A View on
Current Malware Behaviors. In USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET), LEET’09, pages 8–8, Berkeley, CA, USA,
2009. USENIX Association. 38

[52] B. Bencsath, L. Buttyán, and T. Paulik. XCS Based Hidden Firmware
Modification on Embedded Dievices. In International Conference on Soft-
ware, Telecommunications and Computer Networks (SoftCOM), 2011. 14,
74

[53] C. M. Bishop et al. Pattern recognition and machine learning, volume 4.
springer New York, 2006. 87

[54] A. Blanco and M. Eissler. One firmware to monitor’em all. Ekoparty,
2012. 10

[55] BlindElephant. Web Application Fingerprinter. http://blindelephant.
sourceforge.net, Jun 2015. 15

[56] A. L. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Artificial intelligence, 97(1):245–271, 1997. 87

[57] H. Bojinov, E. Bursztein, and D. Boneh. XCS: Cross Channel Scripting
and Its Impact on Web Applications. In ACM Conference on Computer
and Communications Security (CCS), 2009. 14, 74

[58] H. Bojinov, E. Bursztein, E. Lovett, and D. Boneh. Embedded manage-
ment interfaces: Emerging massive insecurity. BlackHat USA, 2009. 1, 8,
14, 58, 105

[59] D. Bongard. Fingerprinting Web Application Platforms by Variations in
PNG Implementations. Blackhat, 2014. 15

[60] K. Bonne Rasmussen and S. Capkun. Implications of Radio Fingerprinting
on the Security of Sensor Networks. In International Conference on Security
and Privacy in Communications Networks (SecureComm), 2007. 3, 16, 89,
107

[61] J.-Y. L. Boudec. Performance Evaluation of Computer and Communica-
tion Systems. EFPL Press, 2011. 49, 87

[62] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL Injection
Attacks. In Applied Cryptography and Network Security, 2004. 57, 115

Ph.D. Thesis — Andrei Costin

http://blindelephant.sourceforge.net
http://blindelephant.sourceforge.net

BIBLIOGRAPHY 133

[63] M. Brocker and S. Checkoway. iSeeYou: Disabling the MacBook webcam
indicator LED. In USENIX Security Symposium, 2013. 10

[64] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and Auto-
matic Generation of High-Coverage Tests for Complex Systems Programs.
volume 8, pages 209–224, 2008. 12

[65] Carna-Botnet. Internet census 2012: Port scanning/0 using insecure em-
bedded devices, 2013. 1, 2, 7, 11, 106

[66] P. Čeleda, R. Krejčí, and V. Krmíček. Flow-based security issue detection
in building automation and control networks. In Information and Commu-
nication Technologies, pages 64–75. Springer, 2012. 1, 11, 106

[67] P. Čeleda, R. Krejčí, J. Vykopal, and M. Drašar. Embedded malware-
an analysis of the chuck norris botnet. In Computer Network Defense
(EC2ND), 2010 European Conference on, pages 3–10. IEEE, 2010. 1, 11,
106

[68] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. MAST: Triage for
Market-scale Mobile Malware Analysis. In ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec), WiSec ’13, pages
13–24, New York, NY, USA, 2013. ACM. 47

[69] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive
Experimental Analyses of Automotive Attack Surfaces. In USENIX Secu-
rity Symposium, SEC’11, pages 6–6, Berkeley, CA, USA, 2011. USENIX
Association. 20, 33, 111, 113

[70] K. Chen. Reversing and exploiting an Apple firmware update. BlackHat
USA, 2009. 10

[71] S. Christey and R. A. Martin. Vulnerability type distributions in CVE.
Mitre Report, 2007. 57, 115

[72] Cisco. The Internet of Things: How the Next Evolution of the Internet Is
Changing Everything. Apr 2011. 1, 105

[73] A. Costin. Hacking Printers for Fun and Profit. 10, 37

[74] A. Costin. PostScript(um): You’ve Been Hacked. 10, 37

[75] A. Costin. All your cluster-grids are belong to us: Monitoring the
(in)security of infrastructure monitoring systems. In 1st IEEE Workshop
On Security and Privacy in the Cloud. IEEE, 2015. xx

Large Scale Security Analysis of Embedded Devices’ Firmware

134 BIBLIOGRAPHY

[76] A. Costin and A. Francillon. Ghost in the Air (Traffic): On insecurity of
ADS-B protocol and practical attacks on ADS-B devices. Black Hat USA,
July 2012. xx, 20, 23, 111

[77] A. Costin and A. Francillon. Short Paper: A Dangerous ’Pyrotechnic
Composition’: Fireworks, Embedded Wireless and Insecurity-by-Design. In
ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec), WiSec ’14. ACM, 2014. xx

[78] A. Costin, J. Isacenkova, M. Balduzzi, A. Francillon, and D. Balzarotti.
The role of phone numbers in understanding cyber-crime schemes. In
Privacy, Security and Trust (PST), 2013 Eleventh Annual International
Conference on, pages 213–220. IEEE Computer Society Press, 2013. xx

[79] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis. A
large scale analysis of the security of embedded firmwares. In USENIX
Security Symposium. USENIX, 2014. xx

[80] A. Costin, A. Zarras, and A. Francillon. Automated dynamic firmware
analysis at scale: A case study on embedded web interfaces. arXiv,
(arXiv:1511.03609), 2015. xix

[81] A. Cui. Embedded Device Firmware Vulnerability Hunting with FRAK.
DefCon 20, 2012. 9, 43, 44, 127

[82] A. Cui, M. Costello, and S. J. Stolfo. When Firmware Modifications At-
tack: A Case Study of Embedded Exploitation. In ISOC Network and
Distributed System Security Symposium (NDSS), 2013. 10, 34, 37, 43,
113

[83] A. Cui and S. J. Stolfo. A Quantitative Analysis of the Insecurity of
Embedded Network Devices: Results of a Wide-area Scan. In Annual
Computer Security Applications Conference (ACSAC), 2010. 7, 8, 16, 34

[84] Z. Cutlip. Emulating and Debugging Workspace. http://shadow-file.
blogspot.fr/2013/12/emulating-and-debugging-workspace.
html. 77

[85] J. Dahse and T. Holz. Simulation of Built-in PHP Features for Precise
Static Code Analysis. In ISOC Network and Distributed System Security
Symposium (NDSS), 2014. 14, 55, 58, 61, 73, 74, 127

[86] T. Danova. The internet of everything. Business Insider, Feb, 28, 2014.
2, 106

[87] D. Davidson, B. Moench, S. Jha, and T. Ristenpart. FIE on Firmware:
Finding Vulnerabilities in Embedded Systems Using Symbolic Execution.
In USENIX Security Symposium, SEC’13, pages 463–478, Berkeley, CA,
USA, 2013. USENIX Association. 12, 13

Ph.D. Thesis — Andrei Costin

http://shadow-file.blogspot.fr/2013/12/emulating-and-debugging-workspace.html
http://shadow-file.blogspot.fr/2013/12/emulating-and-debugging-workspace.html
http://shadow-file.blogspot.fr/2013/12/emulating-and-debugging-workspace.html

BIBLIOGRAPHY 135

[88] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association. 47

[89] G. Delugré. Closer to metal: reverse-engineering the Broadcom NetEx-
treme’s firmware. Hack.lu, 2010. 10

[90] L. C. C. Desmond, C. C. Yuan, T. C. Pheng, and R. S. Lee. Identifying
Unique Devices Through Wireless Fingerprinting. In ACM conference on
Wireless network security, 2008. 3, 16, 89, 107

[91] B. F. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan. Re-
peatable Reverse Engineering for the Greater Good with PANDA. 2014.
13

[92] P. Domingos. A few useful things to know about machine learning. Com-
munications of the ACM, 55(10):78–87, 2012. 87

[93] A. Doupé, B. Boe, C. Kruegel, and G. Vigna. Fear the EAR: Discovering
and Mitigating Execution After Redirect Vulnerabilities. In ACM Confer-
ence on Computer and Communications Security (CCS), 2011. 58

[94] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the State: A
State-Aware Black-Box Web Vulnerability Scanner. In USENIX Security
Symposium, 2012. 14

[95] A. Doupé, M. Cova, and G. Vigna. Why Johnny Can’t Pentest: An Analysis
of Black-box Web Vulnerability Scanners. In Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA). 2010. 14, 68

[96] L. Duflot, Y.-A. Perez, and B. Morin. Netcraft. PHP Usage Stats. http:
//www.php.net/usage.php, June 2007. 73

[97] L. Duflot, Y.-A. Perez, and B. Morin. What If You Can’t Trust Your Net-
work Card? In International Symposium on Recent Advances in Intrusion
Detection (RAID), 2011. 10

[98] K. Dunham. A fuzzy future in malware research. The ISSA Journal,
11(8):17–18, 2013. 38

[99] L. Durfina, J. Kroustek, and P. Zemek. Psybot malware: A step-by-step
decompilation case study. In Reverse Engineering (WCRE), 2013 20th
Working Conference on, pages 449–456. IEEE, 2013. 1, 11, 106

[100] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, et al. The matter of Heart-
bleed. In ACM SIGCOMM Conference on Internet Measurement (IMC),
pages 475–488. ACM, 2014. 9

Large Scale Security Analysis of Embedded Devices’ Firmware

http://www.php.net/usage.php
http://www.php.net/usage.php

136 BIBLIOGRAPHY

[101] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of
the HTTPS Certificate Ecosystem. In ACM SIGCOMM Conference on
Internet Measurement (IMC), IMC ’13, pages 291–304, New York, NY,
USA, 2013. ACM. 8, 51, 53

[102] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-
wide Scanning and Its Security Applications. In USENIX Security Sympo-
sium, 2013. 8, 47, 53, 74

[103] P. Eckersley. How Unique Is Your Web Browser? In Privacy Enhancing
Technologies Symposium (PETS), 2010. 16

[104] K. El Defrawy, A. Francillon, D. Perito, and G. Tsudik. Smart: Secure
and minimal architecture for (establishing a dynamic) root of trust. In
Proceedings of the Network & Distributed System Security Symposium,
San Diego, CA, 2012. 30

[105] B. Eshete, A. Villafiorita, and K. Weldemariam. Early Detection of Security
Misconfiguration Vulnerabilities in Web Applications. In Proceedings of
the 2011 Sixth International Conference on Availability, Reliability and
Security, ARES ’11, pages 169–174, Washington, DC, USA, 2011. IEEE
Computer Society. 55

[106] F. B. et al. QEMU – Quick EMUlator. http://www.qemu.org. 59

[107] eurialo. Lightidra IRC Router Scanner – Lightaidra is an IRC com-
manded tool that allows for scanning and exploiting routers. https:
//packetstormsecurity.com/files/109244, 2012. 11

[108] D. Ewing. Synapse’s snap network operat-
ing system. http://www.synapse-wireless.com/
upl/downloads/industry-solutions/reference/
white-paper-synapse-snap-network-operating-system-96f6130b.
pdf. 24

[109] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet Dossier. White
paper, Symantec Corp., Security Response, 2011. 20, 111

[110] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward automated
detection of logic vulnerabilities in web applications. In USENIX Security
Symposium, 2010. 58

[111] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, Jun
1999. 91

[112] E. Fong and V. Okun. Web Application Scanners: Definitions and Func-
tions. In Annual Hawaii International Conference on System Sciences
(HICSS), 2007. 14, 58

Ph.D. Thesis — Andrei Costin

http://www.qemu.org
https://packetstormsecurity.com/files/109244
https://packetstormsecurity.com/files/109244
http://www.synapse-wireless.com/upl/downloads/industry-solutions/reference/white-paper-synapse-snap-network-operating-system-96f6130b.pdf
http://www.synapse-wireless.com/upl/downloads/industry-solutions/reference/white-paper-synapse-snap-network-operating-system-96f6130b.pdf
http://www.synapse-wireless.com/upl/downloads/industry-solutions/reference/white-paper-synapse-snap-network-operating-system-96f6130b.pdf
http://www.synapse-wireless.com/upl/downloads/industry-solutions/reference/white-paper-synapse-snap-network-operating-system-96f6130b.pdf

BIBLIOGRAPHY 137

[113] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Randwyk, and D. Sicker.
Passive Data Link Layer 802.11 Wireless Device Driver Fingerprinting. In
USENIX Security Symposium, 2006. 3, 16, 89, 107

[114] G. “Fyodor” Lyon. NMAP (Network Mapper) – a free and open source
utility for network discovery and security auditing. http://nmap.org/.
7, 96

[115] D. Geer. Cybersecurity as Realpolitik. BlackHat, 2014. 1, 105

[116] B. Gourdin, C. Soman, H. Bojinov, and E. Bursztein. Toward Secure
Embedded Web Interfaces. In USENIX Security Symposium, 2011. 14,
34, 113

[117] C. Heffner. binwalk – firmware analysis tool designed to assist in the
analysis, extraction, and reverse engineering of firmware images. 9, 43

[118] C. Heffner. Emulating NVRAM in Qemu. http://www.devttys0.com/
2012/03/emulating-nvram-in-qemu/. 77

[119] C. Heffner. littleblackbox – Database of private SSL/SSH keys for embed-
ded devices. 50

[120] C. Heffner. Breaking SSL on Embedded Devices, December 2010. 50

[121] C. Heffner. Reverse Engineering a D-Link Backdoor, October 2013. 1, 2,
34, 35, 52, 106, 113

[122] D. Hely, F. Bancel, M.-L. Flottes, and B. Rouzeyre. Secure scan tech-
niques: a comparison. In On-Line Testing Symposium, 2006. IOLTS 2006.
12th IEEE International, pages 6–pp. IEEE, 2006. 30

[123] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra. Finding Software
License Violations Through Binary Code Clone Detection. In Proceedings
of the 8th Working Conference on Mining Software Repositories, MSR ’11,
pages 63–72, New York, NY, USA, 2011. ACM. 10, 43

[124] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining
Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices.
In USENIX Security Symposium, 2012. 8

[125] V. Hilderman and T. Baghi. Avionics certification: a complete guide to
DO-178 (software), DO-254 (hardware). 2007. 23

[126] J. Hirsch and K. Bensinger. Toyota settles acceleration lawsuit after $3-
million verdict. Los Angeles Times, October 25, 2013. 20, 33, 111, 113

[127] H. Holm, T. Sommestad, J. Almroth, and M. Persson. A quantitative eval-
uation of vulnerability scanning. Information Management & Computer
Security, 19(4):231–247, 2011. 14

Large Scale Security Analysis of Embedded Devices’ Firmware

http://nmap.org/
http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/

138 BIBLIOGRAPHY

[128] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. Fast
and Precise Sanitizer Analysis with BEK. In USENIX Security Symposium,
2011. 58

[129] HP-Fortify-ShadowLabs. Report: Internet of Things Research Study.
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=
4AA5-4759ENW, 2014. 1, 9, 105

[130] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai. Web Application
Security Assessment by Fault Injection and Behavior Monitoring. In Inter-
national Conference on World Wide Web (WWW), 2003. 58

[131] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Se-
curing Web Application Code by Static Analysis and Runtime Protection.
In International Conference on World Wide Web (WWW), 2004. 14

[132] Independent Security Evaluators. SOHO Network Equipment (Technical
Report), 2013. 1, 8, 34, 35, 105, 113

[133] Intel. Rise of the Embedded Internet. 2009. 1, 105

[134] IOActive. Critical DASDEC Digital Alert Systems (DAS) Vulnerabilities,
June 2013. 50

[135] IOActive. stringfighter – Identify Backdoors in Firmware By Using Auto-
matic String Analysis, May 2013. 52

[136] IOActive. Critical Belkin WeMo Home Automation Vulnerabilities, Febru-
ary 2014. 50

[137] J. Isacenkova, O. Thonnard, A. Costin, D. Balzarotti, and A. Francillon.
Inside the scam jungle: A closer look at 419 scam email operations. In
Security and Privacy Workshops (SPW), 2013 IEEE, pages 143–150. IEEE,
2013. xx

[138] J. Jang, D. Brumley, and S. Venkataraman. BitShred: Feature Hashing
Malware for Scalable Triage and Semantic Analysis. In ACM Conference on
Computer and Communications Security (CCS), CCS ’11, pages 309–320,
New York, NY, USA, 2011. ACM. 47

[139] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities (Short Paper). In IEEE
Symposium on Security and Privacy, 2006. 14, 55, 61, 73

[140] N. Jovanovic, C. Kruegel, and E. Kirda. Static analysis for detecting taint-
style vulnerabilities in web applications. Journal of Computer Security,
18(5):861–907, 2010. 58

Ph.D. Thesis — Andrei Costin

http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-4759ENW
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-4759ENW

BIBLIOGRAPHY 139

[141] M. Kammerstetter, C. Platzer, and W. Kastner. PROSPECT – Peripheral
Proxying Supported Embedded Code Testing. In ACM Symposium on
Information, Computer and Communications Security (ASIACCS), 2014.
13, 58

[142] A. Klein. Divide and Conquer: HTTP Response Splitting, Web Cache
Poisoning Attacks and Related Topics. Sanctum whitepaper, 2004. 57,
115

[143] L. A. Klein. Sensor and data fusion: a tool for information assessment and
decision making, volume 324. Spie Press Bellingham, 2004. 94

[144] T. Kohno, A. Broido, and K. C. Claffy. Remote Physical Device Fin-
gerprinting. Dependable and Secure Computing, IEEE Transactions on,
2(2):93–108, 2005. 16, 89, 96

[145] J. Z. Kolter and M. A. Maloof. Learning to detect and classify mali-
cious executables in the wild. The Journal of Machine Learning Research,
7:2721–2744, 2006. 2, 107

[146] J. Kornblum. Identifying Almost Identical Files Using Context Triggered
Piecewise Hashing. Digit. Investig., 3:91–97, 2006. 16, 38

[147] J. Kornblum. Identifying almost identical files using context triggered
piecewise hashing. Digital investigation, 3:91–97, 2006. 93

[148] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Exper-
imental Security Analysis of a Modern Automobile. In IEEE Symposium
on Security and Privacy, SP ’10, pages 447–462, Washington, DC, USA,
2010. IEEE Computer Society. 20, 33, 111, 113

[149] K. Koscher, T. Kohno, and D. Molnar. SURROGATES: Enabling Near-
Real-Time Dynamic Analyses of Embedded Systems. In USENIX Work-
shop on Offensive Technologies (WOOT), Washington, D.C., Aug. 2015.
USENIX Association. 13

[150] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. Security & Pri-
vacy, IEEE, 9(3):49–51, 2011. 20, 111

[151] H. Li, D. Tong, K. Huang, and X. Cheng. FEMU: A Firmware-Based
Emulation Framework for SoC Verification. In IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), 2010. 13

[152] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro, 2008. 45

Large Scale Security Analysis of Embedded Devices’ Firmware

140 BIBLIOGRAPHY

[153] B. Livshits and S. Chong. Towards Fully Automatic Placement of Se-
curity Sanitizers and Declassifiers. In ACM Symposium on Principles of
Programming Languages (POPL), 2013. 58

[154] D. Maslennikov. Mobile Malware Evolution, Part 5. 2012 [cited 2012 26
March]. 2, 106

[155] J. Matherly. SHODAN – Computer Search Engine. http://www.shodan.
io. 8, 47, 74

[156] P. C. Messina, R. D. Williams, and G. C. Fox. Parallel computing works
! Parallel processing scientific computing. Morgan Kaufmann, San Fran-
cisco, CA, 1994. 39

[157] C. Miller. Battery firmware hacking. BlackHat USA, 2011. 10

[158] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.
Inside the slammer worm. IEEE Security & Privacy, (4):33–39, 2003. 2,
106

[159] H. Moore. Security Flaws in Universal Plug and Play: Unplug, Don’t Play.
Rapid7, Ltd., 2013. 8

[160] Morning Star Security. WhatWeb. http://www.morningstarsecurity.
com/research/whatweb, Jun 2015. 15

[161] K. Nandakumar, Y. Chen, S. C. Dass, and A. K. Jain. Likelihood ratio-
based biometric score fusion. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 30(2):342–347, 2008. 94

[162] M. Niemietz and J. Schwenk. Owning Your Home Network: Router Secu-
rity Revisited. In Web 2.0 Security and Privacy (W2SP) Workshop, 2015.
1, 9, 16, 90, 105

[163] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna. Cookieless Monster: Exploring the Ecosystem of Web-Based
Device Fingerprinting. In IEEE Symposium on Security and Privacy, 2013.
16, 89

[164] Nvidia. CUDA – Compute Unified Device Architecture Programming
Guide. 2007. 45

[165] OpenwallProject. John the Ripper password cracker. http://www.
openwall.com/john/. 45

[166] OWASP. Top 10 Vulnerabilities, 2013. 51

Ph.D. Thesis — Andrei Costin

http://www.shodan.io
http://www.shodan.io
http://www.morningstarsecurity.com/research/whatweb
http://www.morningstarsecurity.com/research/whatweb
http://www.openwall.com/john/
http://www.openwall.com/john/

BIBLIOGRAPHY 141

[167] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow. IoTPOT: Analysing the Rise of IoT Compromises. In USENIX
Workshop on Offensive Technologies (WOOT), Washington, D.C., Aug.
2015. USENIX Association. 12

[168] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn:
Machine learning in python. The Journal of Machine Learning Research,
12:2825–2830, 2011. 80, 118

[169] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-
Architecture Bug Search in Binary Executables. In IEEE Symposium on
Security and Privacy, San Jose, CA, May 2015. 12

[170] Postscapes. Internet of Things Market Forecast. 2014. 1, 105

[171] J. Prescatore. Gartner, quoted in ComputerWorld, 2005. 57, 115

[172] V. Puri, S. Mahendru, R. Rana, and M. Deshpande. Firework injuries: a
ten-year study. Journal of Plastic, Reconstructive & Aesthetic Surgery,
62(9), 2009. 19, 110

[173] J. Radcliffe. Hacking medical devices for fun and insulin: Breaking the
human scada system, August 2011. http://cs.uno.edu/~dbilar/
BH-US-2011/materials/Radcliffe/BH_US_11_Radcliffe_Hacking_
Medical_Devices_WP.pdf. 20, 111

[174] B. Rodrigues. Analyzing Malware for Embedded Devices:
TheMoon Worm. http://w00tsec.blogspot.fr/2014/02/
analyzing-malware-for-embedded-devices.html, 2014. 1, 11,
106

[175] V. Roussev. Data Fingerprinting with Similarity Digests. In IFIP Int. Conf.
Digital Forensics, pages 207–226, 2010. 16, 38, 39

[176] W. Salusky and M. E. Thomas. Patent US8244799 – Client Application
Fingerprinting Based on Analysis of Client Requests, Aug 2012. 15, 89

[177] W. Salusky and M. E. Thomas. Patent US8694608 – Client Application
Fingerprinting Based on Analysis of Client Requests, Apr 2014. 15

[178] M. Samuel, P. Saxena, and D. Song. Context-Sensitive Auto-Sanitization
in Web Templating Languages Using Type Qualifiers. In ACM Conference
on Computer and Communications Security (CCS), 2011. 58

[179] P. Saxena, D. Molnar, and B. Livshits. SCRIPTGARD: Automatic Context-
Sensitive Sanitization for Large-Scale Legacy Web Applications. In ACM
Conference on Computer and Communications Security (CCS), 2011. 58

Large Scale Security Analysis of Embedded Devices’ Firmware

http://cs.uno.edu/~dbilar/BH-US-2011/materials/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
http://cs.uno.edu/~dbilar/BH-US-2011/materials/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
http://cs.uno.edu/~dbilar/BH-US-2011/materials/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
http://w00tsec.blogspot.fr/2014/02/analyzing-malware-for-embedded-devices.html
http://w00tsec.blogspot.fr/2014/02/analyzing-malware-for-embedded-devices.html

142 BIBLIOGRAPHY

[180] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining methods
for detection of new malicious executables. In Security and Privacy, 2001.
S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 38–49. IEEE,
2001. 2, 107

[181] F. Schuster and T. Holz. Towards reducing the attack surface of soft-
ware backdoors. In ACM Conference on Computer and Communications
Security (CCS), 2013. 12, 34, 61, 113

[182] A. Shabtai, Y. Fledel, and Y. Elovici. Automated static code analysis for
classifying android applications using machine learning. In Computational
Intelligence and Security (CIS), 2010 International Conference on, pages
329–333. IEEE, 2010. 2, 107

[183] S. Shah. HTTP Fingerprinting and Advanced Assessment Techniques.
Blackhat, 2003. 15, 90

[184] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Fir-
malice: Automatic Detection of Authentication Bypass Vulnerabilities in
Binary Firmware. In ISOC Network and Distributed System Security Sym-
posium (NDSS), 2015. 2, 12, 61, 107

[185] S. Skorobogatov and C. Woods. Breakthrough silicon scanning discovers
backdoor in military chip. In Proceedings of the 14th International Confer-
ence on Cryptographic Hardware and Embedded Systems, CHES’12, pages
23–40, Berlin, Heidelberg, 2012. Springer-Verlag. 52

[186] S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-by pharming. In 9th
International Conference on Information and Computer Security (ICICS).
Springer Berlin Heidelberg, Aug. 2007. 10

[187] J. V. Stough. distributed-python-for-scripting – DistributedPython for
Easy Parallel Scripting. 45

[188] Z. Su and G. Wassermann. The Essence of Command Injection Attacks
in Web Applications. In ACM Symposium on Principles of Programming
Languages (POPL), 2006. 57, 115

[189] Symantec. IoT Worm Used to Mine Cryptocur-
rency. http://www.symantec.com/connect/blogs/
iot-worm-used-mine-cryptocurrency, 2014. 12

[190] G. Taleck. Ambiguity Resolution via Passive OS Fingerprinting. In Inter-
national Symposium on Recent Advances in Intrusion Detection (RAID),
2003. 96

[191] R. Tian, L. Batten, R. Islam, and S. Versteeg. An automated classification
system based on the strings of trojan and virus families. In Malicious and

Ph.D. Thesis — Andrei Costin

http://www.symantec.com/connect/blogs/iot-worm-used-mine-cryptocurrency
http://www.symantec.com/connect/blogs/iot-worm-used-mine-cryptocurrency

BIBLIOGRAPHY 143

Unwanted Software (MALWARE), 2009 4th International Conference on,
pages 23–30. IEEE, 2009. 2, 107

[192] Tjaldur Software Governance Solutions. Binary Analysis Tool (BAT). 10,
43

[193] A. Tridgell. rsync – utility that provides fast incremental file transfer. 45

[194] J. B. Ullrich. cmd.so Synology Scanner Also Found on Routers.
https://isc.sans.edu/diary/cmd.so+Synology+Scanner+Also+
Found+on+Routers/17883, 2014. 12

[195] J. B. Ullrich. Linksys Worm (“TheMoon”) Captured. https://isc.sans.
edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630, 2014.
1, 11, 106

[196] J. B. Ullrich. Linksys Worm (“TheMoon”) Captured. https:
//isc.sans.edu/diary/Linksys+Worm+%22TheMoon%22+Summary%
3A+What+we+know+so+far/17633, 2014. 1, 11, 106

[197] J. B. Ullrich. More Device Malware: This is why your DVR at-
tacked my Synology Disk Station (and now with Bitcoin Miner!).
https://isc.sans.edu/diary/More+Device+Malware%3A+This+is+
why+your+DVR+attacked+my+Synology+Disk+Station+%28and+now+
with+Bitcoin+Miner!%29/17879, 2014. 12

[198] J. Viega and H. Thompson. The state of embedded-device security (spoiler
alert: It’s bad). IEEE Security & Privacy, 10(5):68–70, 2012. 1, 105

[199] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Cross Site Scripting Prevention with Dynamic Data Tainting and Static
Analysis. In ISOC Network and Distributed System Security Symposium
(NDSS), 2007. 57, 115

[200] Wappalyzer. Identify Software on the Websites You Visit. https://
wappalyzer.com, Jun 2015. 15

[201] D. A. Wheeler. SLOCCount – a set of tools for counting physical Source
Lines of Code (SLOC). http://www.dwheeler.com/sloccount/. 48

[202] xobs and bunnie. The Exploration and Exploitation of an SD Memory
Card. CCC – 30C3, 2013. 53

[203] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar: A
Framework to Support Dynamic Security Analysis of Embedded Systems’
Firmwares. In ISOC Network and Distributed System Security Symposium
(NDSS), 2014. 2, 12, 30, 58, 77, 107

Large Scale Security Analysis of Embedded Devices’ Firmware

https://isc.sans.edu/diary/cmd.so+Synology+Scanner+Also+Found+on+Routers/17883
https://isc.sans.edu/diary/cmd.so+Synology+Scanner+Also+Found+on+Routers/17883
https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630
https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630
https://isc.sans.edu/diary/Linksys+Worm+%22TheMoon%22+Summary%3A+What+we+know+so+far/17633
https://isc.sans.edu/diary/Linksys+Worm+%22TheMoon%22+Summary%3A+What+we+know+so+far/17633
https://isc.sans.edu/diary/Linksys+Worm+%22TheMoon%22+Summary%3A+What+we+know+so+far/17633
https://isc.sans.edu/diary/More+Device+Malware%3A+This+is+why+your+DVR+attacked+my+Synology+Disk+Station+%28and+now+with+Bitcoin+Miner!%29/17879
https://isc.sans.edu/diary/More+Device+Malware%3A+This+is+why+your+DVR+attacked+my+Synology+Disk+Station+%28and+now+with+Bitcoin+Miner!%29/17879
https://isc.sans.edu/diary/More+Device+Malware%3A+This+is+why+your+DVR+attacked+my+Synology+Disk+Station+%28and+now+with+Bitcoin+Miner!%29/17879
https://wappalyzer.com
https://wappalyzer.com
http://www.dwheeler.com/sloccount/

144 BIBLIOGRAPHY

[204] J. Zaddach and A. Costin. Embedded Devices Security and Firmware
Reverse Engineering. BlackHat USA, 2013. xxi

[205] J. Zaddach, A. Kurmus, D. Balzarotti, E.-O. Blass, A. Francillon, T. Good-
speed, M. Gupta, and I. Koltsidas. Implementation and Implications of a
Stealth Hard-drive Backdoor. In Annual Computer Security Applications
Conference (ACSAC), ACSAC ’13, pages 279–288, New York, NY, USA,
2013. ACM. 10, 37

[206] A. Zarras, A. Papadogiannakis, R. Gawlik, and T. Holz. Automated Gen-
eration of Models for Fast and Precise Detection of HTTP-based Malware.
In International Conference on Privacy, Security and Trust (PST), 2014.
15

[207] M. Zheng, M. Sun, and J. Lui. Droidray: a security evaluation system for
customized android firmwares. In ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS), pages 471–482. ACM,
2014. 8

Ph.D. Thesis — Andrei Costin

	Abstract
	List of Publications
	1 Introduction
	1.1 Contributions of the Thesis
	1.2 Organization

	2 State of The Art
	2.1 Real-World Studies
	2.1.1 Large Scale Studies of Embedded Devices and Firmware Images (In-the-Wild Approach)
	2.1.2 Small Scale Studies of Supervised Embedded Devices (In-the-Lab Approach)

	2.2 Firmware Analysis
	2.2.1 Firmware Unpacking, (Re)Packing and Malicious Modifications
	2.2.2 Malware for Embedded Devices and Firmware Images
	2.2.3 Static and Dynamic Firmware Analysis
	2.2.4 Firmware Emulation

	2.3 Web-related Aspects
	2.3.1 Web Application Security
	2.3.2 Web Application Fingerprinting and Identification

	2.4 Fingerprinting and Classification
	2.4.1 Embedded Device Fingerprinting and Identification
	2.4.2 File Classification

	2.5 Summary

	3 Motivating Example – Insecurity of Wireless Embedded Pyrotechnic Systems
	3.1 Introduction
	3.2 Fireworks Systems Architecture
	3.2.1 Regulation, Compliance and Certification

	3.3 Experiments and Results
	3.3.1 Summary
	3.3.2 Firmware Acquisition and Static Analysis
	3.3.3 Hardware Acquisition and Analysis
	3.3.4 Wireless Analysis
	3.3.5 Solutions

	3.4 Future Work
	3.5 Summary

	4 A Large Scale Analysis of the Security of Embedded Firmware Images
	4.1 Introduction
	4.1.1 Methodology
	4.1.2 Results Overview
	4.1.3 Contributions

	4.2 Challenges
	4.3 Experimental Setup
	4.3.1 Architecture
	4.3.2 Firmware Acquisition and Storage
	4.3.3 Unpacking and Analysis
	4.3.4 Correlation Engine
	4.3.5 Data Enrichment
	4.3.6 Setup Development Effort

	4.4 Dataset and Results
	4.4.1 General Dataset Statistics
	4.4.2 Results Overview

	4.5 Case Studies
	4.5.1 Backdoors in Plain Sight
	4.5.2 Private SSL Keys
	4.5.3 XSS in WiFi Enabled SD Cards?

	4.6 Future Work
	4.7 Summary

	5 Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces
	5.1 Introduction
	5.1.1 Overview of our Approach
	5.1.2 Contributions

	5.2 Exploring Techniques to Analyze Web Interfaces of Firmware Images
	5.2.1 Static Analysis
	5.2.2 Dynamic Analysis
	5.2.3 Limitations of Analysis Tools
	5.2.4 Running Web Interfaces

	5.3 Analysis Framework Details
	5.3.1 Firmware Selection
	5.3.2 Filesystem Preparation
	5.3.3 Analysis Phase
	5.3.4 Results Collection and Analysis
	5.3.5 Results Exploitation

	5.4 Dataset
	5.5 Results and Case Studies
	5.5.1 Overview of Discovered Vulnerabilities
	5.5.2 Static Analysis Vulnerabilities
	5.5.3 Dynamic Analysis Vulnerabilities
	5.5.4 Presence of HTTPS
	5.5.5 Other Network Services

	5.6 Discussion
	5.6.1 Emulation Technique's Limitations

	5.7 Future Work
	5.8 Summary

	6 Scalable Firmware Classification and Identification of Embedded Devices
	6.1 Introduction
	6.1.1 Open Problems
	6.1.2 Overview of our Approach
	6.1.3 Contributions

	6.2 Firmware Classification and Identification
	6.2.1 Dataset
	6.2.2 Features for Machine Learning
	6.2.3 Experimental Setup
	6.2.4 Evaluation
	6.2.5 Discussion

	6.3 Device Fingerprinting and Identification
	6.3.1 Dataset
	6.3.2 Metrics for Fingerprinting
	6.3.3 Scoring Systems for Metrics
	6.3.4 Experimental Setup
	6.3.5 Evaluation
	6.3.6 Discussion

	6.4 Usage Scenarios
	6.4.1 Device Fingerprinting and Identification
	6.4.2 Firmware Classification
	6.4.3 Towards Fully Automated System – ``Crawl. Learn. Classify. Identify. Pwn.''

	6.5 Summary

	7 Conclusions
	7.1 Future Work

	A Résumé de la thèse en français
	A.1 Introduction
	A.1.1 Contributions de la Thèse
	A.1.2 Organisation de la Thèse

	A.2 Exemple Motivant – Insécurité des Systèmes Pyrotechniques Sans Fil
	A.2.1 Introduction
	A.2.2 Sommaire

	A.3 Analyse à Grande Échelle de la Sécurité des Firmwares pour Dispositifs Embarqués
	A.3.1 Introduction
	A.3.2 Sommaire

	A.4 Analyse Dynamique de Firmware à Grande Échelle: Une Étude de Cas sur les Interfaces Web de Dispositifs Embarqués
	A.4.1 Introduction
	A.4.2 Sommaire

	A.5 Classification des Firmware et l'Identification des Appareils Embarqués Dans une Manière Scalable
	A.5.1 Introduction
	A.5.2 Sommaire

	A.6 Conclusions
	A.6.1 Les Travaux Ultérieurs

	Ethical Aspects
	List of Figures
	List of Tables
	Bibliography

