

Michael Rothman, Vincent Zimmer, Tim Lewis
Harnessing the UEFI Shell
Moving the Platform Beyond DOS

Michael Rothman
Vincent Zimmer
Tim Lewis

Harnessing the
UEFI Shell
Moving the Platform Beyond DOS

Second Edition

PRESS

ISBN 978-1-5015-1480-7
e-ISBN (PDF) 978-1-5015-0575-1
e-ISBN (EPUB) 978-1-5015-0581-2

Library of Congress Cataloging-in-Publication Data
A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2017 Walter de Gruyter Inc., Boston/Berlin
Printing and binding: CPI books GmbH, Leck
♾ Printed on acid-free paper
Printed in Germany

www.degruyter.com


To my wife Sandi, for having infinite patience in allowing me to find the “spare” time
for this endeavor, and to my sons Ryan and Aaron, who keep me grounded in what
life is really about. Also to my grandfather Joseph, who instilled the love of learning
and set an example I strive to promote for the next generation.

—Mike Rothman

To the three beautiful women in my life: my wife Jan, and my daughters Ally and Zoe.
—Vincent J. Zimmer

To my wife Helen, always bright and beautiful, and to my kids, curious Shannon, car-
ing Brahms, and courageous Miriam, always the joy of my life.

—Tim Lewis

Preface
A man is rich in proportion to the number of things he can afford to let alone.

—Henry David Thoreau

This is a book about a computer program that was never intended to be what it is. The
first version of what is now the UEFI Shell was created to facilitate the debugging of
early parts of EFI. It was never intended to see a customer. It was a simple expedient
tool to speed up an EFI developer’s job. Its escape to the rest of the world was, in
retrospect, inevitable because it was more valuable than we realized. It became pop-
ular enough that, in the eyes of many, it was EFI. It was not, and it is not. EFI (now
UEFI) is a commonly agreed upon set of interfaces between operating systems, BIOS,
and option ROMs. The shell is, in many ways, simply another operating system that
sits on top of EFI.

In the next few years of “add what we need” the shell became more and more
valuable. Badly suffering from too many hands and not enough guidance, it became
complex enough to warrant serious effort, a seriously out of control adolescent if
there ever was one. In the end, it has become valuable enough to warrant the creation
of an industry specification and adoption throughout the industry. It is becoming a
basis of computer component validation, computer validation, and manufacturing,
system testing, and applications. Pretty good for something originally intended as a
throwaway piece of code to test some EFI drivers.

The Shell started its life in 1999 or 2000 (we don’t exactly remember) so it is
comparatively a newcomer. Yet, it is in many ways a throwback to (at least what
now) seems a much simpler time, say 1970 or so. It doesn’t run protected code, have
a swap file or a registry, or even a GUI. As far as we know, it doesn’t even have a
virus scanner.

We’ve discovered there is still a place for a small, simple, developer’s environ-
ment that provides enough resources and support for complex programs without get-
ting in the way of applications that need to (or at least think they need to) “own the
system”.

The Book

The first part of this book introduces the basic concepts: history (Chapter 1), UEFI, the
underlying operating environment (Chapter 2), basics of the shell (Chapter 3), and
basic benefits of a pre-OS shell (Chapter 4). The second part of the book reviews some
of the ways the UEFI Shell is used today, ranging from manufacturing (Chapter 5),
provisioning (Chapter 6), configuration management (Chapters 7), and diagnostics
(Chapter 8). The third part of the book reviews useful tips for batch script program-
ming (Chapter 9) and application programming (Chapter 10). Chapter 11 discusses

viii  Preface

how the shell can be useful to debug UEFI drivers, ironically the shell’s original pur-
pose. Appendixes cover security considerations, UEFI Shell library descriptions, and
provide brief descriptions of the shells commands and APIs.

Contents

Preface  vii

Chapter 1 Introduction  1
What is UEFI?  1
What Do We Mean by Shell?  4
A Short History of the UEFI Shell  5
Brief Overview of the UEFI Shell  5
UEFI Shell APIs  6
Command Line Interface Features  6
Why a Shell at all?  7

Chapter 2 Under the UEFI Shell  9
Shell and UEFI  9
Evolution and Revolution  13

Chapter 3 What Is the UEFI Shell?  15
What Is Contained in the UEFI Shell?  16
What Kind of Shell Do You Have?  16
What!? No Shell? No Problem!  17
Programmatic Shell Environment  19
Using UEFI Shell Commands  20
Interactive Shell Environment  22
Scripting  22
Program Launch  24
File-System Abstractions  29
Shell Script Resolves into a UEFI Firmware Action  31

Chapter 4 Why We Need an Execution Environment before the OS  33
Evolution of a Machine  33
The Platform Initialization Flow  34
UEFI Transitions  36
States of a Platform  38
Readiness of UEFI  41
Migration Using the UEFI Shell  44
Going Forward  45

Chapter 5 Manufacturing  47
Throughput  47
Manufacturing Test Tools  49

x  Contents

Hardware Access with Manufacturing Tools  50
Converting Manufacturing Tools  53
Conclusion  54

Chapter 6 Bare Metal Provisionig  55
Provisioning with the UEFI Shell  55
UEFI Networking Stack  56
Securing the Network  58
Speeding Up the Network  62
Example of Putting It Together  62
Summary  68

Chapter 7 Configuration of Provisioned Material  69
Initialization Timeline  69
Configuration Infrastructure Overview  71
Using the Configuration Infrastructure  72
Driver Model Interactions  73
Provisioning the Platform  75
Configuring through the UEFI Shell  76
Basic Configuration  76
Advanced Configuration Abilities  79

Chapter 8 The Use of UEFI for Diagnostics  85
Types of Diagnostics  85
SMBIOS Table Organization  87
SMBIOS Structure Table Entry Point  88
Table Organization Graph  88
Structure Standards  89
Structure Evolution and Usage Guidelines  90
Text Strings  90
Required Structures and Data  91
Features  91
User Interface Design  92
Design Guide  92
Usage  93
Examples  93
Architecture Design  94
Data Structure  95
SMBIOS_STRUCTURE_TABLE  95
SMBIOS_HEADER  97
SMBIOS_STRUCTURE_POINTER  98
STRUCTURE_STATISTICS  99

 Contents  xi

Source Code for the Utility  100
Summary  105

Chapter 9 UEFI Shell Scripting  107
Hello, World!  108
Echo  108
Echo All Parameters  109
Echo All Parameters (Improved Version)  110
Concatenate Text Files  112
List Only Selected “ls” Information  113
Install Script  115
How to Make a Shell Script Appear as a Boot Option  119

Chapter 10 UEFI Shell Programming  121
A Simple UEFI Shell Application: HelloWorld  121
The Source File: HelloWorld.c  121
The Component Information (.inf) File  123
A Simple Standard Application: HelloWorld2  124
The Source File: HelloWorld2.c  124
The Component Information (.inf) File: HelloWorld2.inf  125
Read Keyboard Input in UEFI Shell Scripts: GetKey  126
The Source File: GetKey.c  127
The Component Information (.inf) File: GetKey.inf  137
The Build Description (.dsc) File  139
Calculate Math Expressions: Math  139
The Source File: Math.c  140
The Component Information (.inf) File: Math.inf  154
Convert ASCII to Unicode and Back: UniCodeDecode  154
The Source File: UniCodeDecode.c  155
The Component Information (.inf) File  163

Chapter 11 Managing UEFI Drivers Using the Shell  165
Testing Specific Protocols  166
Loading and Unloading UEFI Drivers  167
Load  168
LoadPciRom  168
Unload  169
Connecting UEFI Drivers  169
Connect  169
Disconnect  170
Reconnect  170
Driver and Device Information  171

xii  Contents

Drivers  171
Devices  172
DevTree  172
Dh –d  173
OpenInfo  173
Testing the Driver Configuration and Driver Diagnostics Protocols  174
DrvCfg  174
DrvDiag  174
Debugging Code Statements  175
POST Codes  177
Post Card Debug  178
Text-Mode VGA Frame Buffer  179
Other Options  179

Appendix A Security Considerations  181
UEFI Shell Binary Integrity  181
Overview  181
Signed Executable Overview  182
Digital Signature  183
Signed Executable Processing  185
Signed Executable Generation Application (SignTool)  185
UEFI Load Image  186
SignTool  186
Build Environment  186
Example usage  187

Appendix B Command Reference  189
Command Profiles and Support Levels  189
Command List  189
Standardizing Command Output  192
Command Details  193
alias  193
attrib  194
bcfg  194
cd  196
cls  197
comp  197
connect  198
cp/copy  199
date  199
dblk  200
del  200

 Contents  xiii

devices  200
devtree  201
dh  201
dir/ls  202
disconnect  202
dmem  203
dmpstore  204
drivers  204
drvcfg  205
drvdiag  206
echo  206
edit  207
eficompress  207
efidecompress  207
exit  207
for  208
getmtc  209
goto  209
help  209
hexedit  210
if  210
ifconfig  214
ifconfig6  214
load  215
loadpcirom  216
ls  216
map  217
md  218
mem  218
memmap  218
mkdir  219
mm  219
mode  220
mv  220
openinfo  220
parse  221
pause  221
pci  221
ping  222
ping6  222
reconnect  223
reset  223

xiv  Contents

rm  224
sermode  224
set  225
setsize  226
setvar  226
shift  227
smbiosview  227
stall  228
time  228
time  229
touch  229
type  230
unload  230
ver  230
vol  230

Appendix C Programming Reference  233
Script-based Programming  233
Parameter Passing  233
Redirection and Piping  234
Return Codes  235
Environment Variables  236
Non-Script-based Programming  237
Shell Protocol  238
Shell Parameters Protocol  240

Appendix D UEFI Shell Library  241
Functions  241
File I/O Functions  241
Miscellaneous Functions  242
Command Line Parsing  243
Text I/O  244
String Functions  244
ShellCloseFile()  245
ShellCloseFileMetaArg()  246
ShellCommandLineCheckDuplicate()  246
ShellCommandLineFreeVarList()  247
ShellCommandLineGetCount()  247
ShellCommandLineGetFlag()  248
ShellCommandLineGetValue()  248
ShellCommandLineGetRawValue()  249
ShellCommandLineParseEx()  250

 Contents  xv

ShellCopySearchAndReplace()  251
ShellConvertStringToUint64()  252
ShellCreateDirectory()  253
ShellDeleteFile()  254
ShellDeleteFileByName()  254
ShellExecute()  255
ShellFileExists()  257
ShellFileHandleReturnLine()  257
ShellFileHandleReadLine()  258
ShellFindFilePath()  259
ShellFindFilePathEx()  260
ShellFindFirstFile()  260
ShellFindNextFile()  261
ShellFlushFile()  262
SHELL_FREE_NON_NULL()  263
ShellGetCurrentDir()  263
ShellGetEnvironmentVariable()  264
ShellGetExecutionBreakFlag()  265
ShellGetFileInfo()  265
ShellGetFilePosition()  266
ShellGetFileSize()  266
ShellHexStrToUintn()  267
ShellInitialize()  268
ShellIsDecimalDigitCharacter()  268
ShellIsDirectory()  269
ShellIsFile()  269
ShellIsFileInPath()  270
ShellIsHexaDecimalDigitCharacter()  270
ShellIsHexOrDecimalNumber()  271
ShellOpenFileByDevicePath()  271
ShellOpenFileByName()  273
ShellOpenFileMetaArg()  274
ShellPrintEx()  275
ShellPrintHelp()  276
ShellPrintHiiEx()  277
ShellPromptForResponse()  278
ShellPromptForResponseHii()  279
ShellReadFile()  281
ShellSetFileInfo()  282
ShellSetFilePosition()  283
ShellSetEnvironmentVariable()  284
ShellSetPageBreakMode()  285

xvi  Contents

ShellStrToUintn()  285
ShellWriteFile()  286
StrnCatGrow()  287
Data Structures  288
Format Strings  288
Shell Parameters  289

Index  291

DOI 10.1515/9781501505751-001

Chapter 1
Introduction

Less but better.
—Dieter Rams

To most users, a computer is represented by the operating system that they’re using
and nothing more. However, unbeknownst to most basic users, there are a large num-
ber of components that must work in concert to go from where the user presses the
power button, the hardware is initialized, the boot target is discovered, to where the
operating system is launched.

There are two major phases of platform initialization between when a user turns
a computer on and the computer has completed its initialization: the first phase is
what might be called the “pre-OS” stage where the platform’s hardware is initialized
and made usable, and the second phase is when the boot target is launched, which
oftentimes would be the target operating system.

The early phase of platform initialization is primarily focused on the launching
of a target. This target almost always is an operating system, but it doesn’t always
have to be. Sometimes, activities such as bare-metal provisioning, diagnostics, per-
sonality migration, scripting and others are accomplished through an intermediary
execution environment known as a UEFI shell.

Much of this book will further explain the intricacies of how one uses the UEFI
shell to accomplish the aforementioned activities, but this being an introductory
chapter, it seems reasonable to give a slight background on what the UEFI shell actu-
ally is and from where its roots evolved.

What is UEFI?

Historically, the BIOS (Basic Input Output System) was a black box. In other words,
there was very limited exposure to how it worked and the interoperability associated
with the BIOS and the rest of the system was limited at best.

The purpose of a BIOS was very simple: its role was to discover and initialize the
hardware, run any tests that were required to ensure the hardware was in working
order, and ultimately launch the boot target.

The goals for today’s BIOS have not significantly changed. What has changed is
that the “black box” nature of BIOS has been opened so that the industry can normal-
ize the interfaces associated with BIOS technology and leverage it in many ways that
were previously not possible.

In 2005, the UEFI (Unified Extensible Firmware Interface) Forum was estab-
lished. The forum itself was formed with several thoughts in mind:

  Chapter 1: Introduction

■ The UEFI Forum is established as a Washington non-profit Corporation
– Develops, promotes, and manages evolution of the UEFI Specification
– Continue to drive low barriers for adoption

■ The Promoter members for the UEFI forum are:
– AMD, AMI, Apple, Dell, HP, IBM, Insyde, Intel, Lenovo, Microsoft, Phoenix

■ The UEFI Forum has a form of tiered Membership:
– Promoters, Contributors, and Adopters
– More information on the membership tiers can be found at: www.uefi.org

■ The UEFI Forum has several work groups:
– Figure 1.1 illustrates the basic makeup of the forum and the corresponding

roles.

Figure 1.1: Forum group hierarchy

 What is UEFI?  

■ Sub-teams are created in the main owning workgroup when a topic of sufficient
depth requires a lot of discussion with interested parties or experts in a particular
domain. These teams are collaborations among many companies who are re-
sponsible for addressing the topic in question and bringing back to the
workgroup either a response or material for purposes of inclusion in the main
working specification. Some examples of sub-teams that have been created are
as follows:
– UCST – UEFI Configuration Sub-team

• Chaired by Michael Rothman
• Responsible for all configuration-related material and the team

has been responsible for the creation of the UEFI configuration
infrastructure commonly known as HII, which is in the UEFI
Specification.

– UNST – UEFI Networking Sub-team
• Chaired by Vincent Zimmer
• Responsible for all network-related material and the team has

been responsible for the update/inclusion of the network-related
material in the UEFI specification, most notably the IPv6 network
infrastructure.

– USHT – UEFI Shell Sub-team
• Chaired by Michael Rothman
• Responsible for all command shell-related material. The team has

been responsible for the creation of the UEFI Shell specification and
continues to maintain the contents as technology evolves.

– USST – UEFI Security Sub-team
• Chaired by Vincent Zimmer
• Responsible for all security-related material and the team has been

responsible for the added security infrastructure in the UEFI speci-
fication.

With the UEFI Specification, we now have programmatic interfaces to features and
functionality that we never had before in previous generations. This allows third par-
ties to create UEFI-compatible software that can run on platforms which are UEFI-
compliant.

In Figure 1.2, we see a very high level illustration of the general software flow
during platform initialization.

The normal process would be to launch the operating system loader, which is a
UEFI-compliant item, and it in turn will initialize the operating system.

  Chapter 1: Introduction

However, there are cases where the user or system administrator would choose
to launch other components such as a UEFI Shell. This of course leads to a natural
question, “What is a shell?”

Figure 1.2: High-Level Platform Initialization Flow

What Do We Mean by Shell?

At its most basic, a shell is a way of exposing an interface to a user. This can be a
graphics interface such as one that leverages icons, mouse clicks, and animation, or
a more rudimentary interface such as a CLI (Command-Line Interface), which requires
a user to type commands to a command processor for it to respond.

It should be pointed out that from a programmatic point of view, a shell also pro-
vides interfaces from which an application can interact with the underlying program-
matic abstractions (interfaces).

This book will cover a wide variety of the underlying APIs (both programmatic
and script-based) as well as functional capabilities. For reference, there are two very
pertinent specifications that come out of the UEFI forum (www.uefi.org).
– UEFI specification: The specification that covers a wide variety of programmatic

interfaces, many of which are associated with interacting with a platform’s hard-
ware and other platform policy. This is the specification that forms the basis of
what is known as “UEFI compatibility.”

– Shell specification: The specification that also describes programmatic inter-
faces that are exposed by a UEFI Shell compatible environment. In addition to

 Brief Overview of the UEFI Shell  

the typical programmatic interfaces, the specification also describes a large se-
ries of commands that form the basis of the UEFI Shell’s scripting language.

A Short History of the UEFI Shell

The UEFI Shell had very humble beginnings. Its roots lie with the birth of the PC and
the advent of CPM/DOS.

For those who can recall the predominant operating system of the 1980’s, it was
part and parcel of the original IBM PC and was very much ubiquitous for users of com-
puters in that era. The command-line interface and many of the commands that are
very familiar to users (e.g., copy, delete, echo) owe their origins to the days of DOS
(Disk Operating System).

In those days, DOS was the boot target. The expectations of the user were a bit
more humble than they are today, and to give a relative comparison of the complexity
between now and then, bear in mind that the first DOS with all of its utilities and
kernel fit within 150K worth of code, while most modern operating systems may have
an on-disk size of one gigabyte or more.

The main goal of DOS was to be able to launch applications, utilities, and execute
scripts.

DOS exposed limited standardized APIs to access the underlying platform, so the
complexity associated with what one could do through the command-line interface
was also fairly limited. However, with the advent of UEFI and the myriad interfaces
that it exposed, the possibilities became fairly broad. For instance, within UEFI we
have provided abstractions to access networking devices, graphical components,
storage devices, and a multitude of other things. The possibilities of what a third-
party application or script can do is much broader than was ever possible in the ear-
liest of operating systems.

It should be noted that in many UEFI-compliant platforms, the UEFI shell and its
underlying abstractions are all contained on the platform’s embedded non-volatile
storage (e.g., FLASH device) and can execute even without a boot media target. This is
something that the platforms of old did not provide. On a UEFI-compliant system, you
could potentially have a rather robust environment of a complete network stack, UEFI
shell, and a modern programming environment with memory managers and a driver
model. This powerful environment now allows for some of what will be described in
ensuing chapters, such as bare-metal provisioning and advanced diagnostics.

Brief Overview of the UEFI Shell

The UEFI shell consists of two parts: a set of APIs and a command-line interface.

  Chapter 1: Introduction

UEFI Shell APIs

The set of APIs abstract the command line and file I/O aspects of the system. For ex-
ample, the command-line APIs allow UEFI Shell programs to read the command line.

There are also a variety of APIs that deal with the shell environment, such as get-
ting the current setting for the PATH or other meaningful environment variables.

Many of these APIs are used primarily in support of scripting commands that are
covered in later chapters in this book. These interfaces make a shell application much
simpler to write, because they hide some of the complexity that is associated with the
underlying UEFI environment. For example, there are many Shell Protocol interfaces
having to do with reading and writing files on various storage media. The reason for
this is because when the Shell Specification was created, we wanted to limit the
amount of underlying UEFI knowledge someone must have before being an effective
user of the shell. That means if it was possible to provide an abstraction that simpli-
fied writing an application, then we provided that interface. Ultimately the Shell
Specification reflects what was deemed the most practical and useful abstractions to
facilitate the use by new users of the shell.

Command Line Interface Features

With any command-line interface, there must be a command processor; the compo-
nent that interprets what it was asked to do and then goes ahead and does it.

The command-line processor is the logic that parses whatever a user or script
sends to it and is essentially the interpreter of the “shell language” that the UEFI Shell
speaks. Whether it’s how hyphens are treated, wild card support, I/O redirection, or
quoted strings, all of that complexity is handled by the shell and is something that
can be leveraged by text-based scripts or by shell applications that in turn want to
leverage the command-line interface.

As to the format of the shell applications that a third-party may create, these are
all built to be compliant with what a standard UEFI application would look like. In
other words, the UEFI Shell uses the same executable program format as does its un-
derlying software layers: PE/COFF. PE/COFF is not a pure binary image. Instead, it is
a series of variable length data structures that allow the UEFI Shell to load programs
at arbitrary addresses in memory via a process known as relocation. PE/COFF was
chosen because it is well known in the industry and produced by a wide variety of
compiler/linker sets across the operating systems most developers use.

The UEFI Shell defines a scripting language. This language is similar to program-
ming languages but operates at a higher level. The language allows for looping, con-
ditional execution, and data storage and retrieval via environment variables. The
scripting language is unique to the UEFI Shell but similar enough to other shells that
learning it shouldn’t be difficult.

 Why a Shell at all?  

The UEFI Shell is designed for a variety of environments. To meet all of the re-
quirements, different levels of command support are specified. In the most minimal,
there is space for one user application. The shell is simply used to kick that applica-
tion off. In richer versions, you’ll find batch commands to control automation. Again,
the user may never interact with the UEFI Shell; instead, the shell is useful to manage
the order of execution of programs. In the most full featured versions of the UEFI
Shell, like the ones you might be developing applications on and for, you’ll find the
standard commands like dir (ls), copy, a minimal full screen editor, and the like.

Why a Shell at all?

It’s a reasonable question to ask, “With advanced computers and operating systems,
why do we even need something as simple as a shell anymore?”

Oddly enough, the answer to that question is in the question. The UEFI Shell has
persisted for one clear reason: because it is simple and useful.

Consider for a moment that the UEFI Shell does not even require a platform to
have a bootable drive. No operating system may be on the machine, yet you can run
the shell and compatible applications. These shell programs can reach out and touch
anything on the platform and test it. They can potentially connect to a remote server
and pull down gigabytes of data to provision the platform. The shell can be used as
an aid in the manufacturing line to test the components on the system before they
even leave the factory.

The UEFI Shell requires no platform-level customization. It requires no drivers
beyond those included in the shipping system. This means that as the UEFI Shell is
used it becomes less and less likely to be the culprit of bugs introduced as a part of
the system. It becomes an island of consistency in an ocean of variability.

The UEFI Shell is, in the end, useful because it is small and not intrusive, just as
its cousins are useful because they are large and all-encompassing.

DOI 10.1515/9781501505751-002

Chapter 2
Under the UEFI Shell

You cannot create experience. You must undergo it.
—Albert Camus

The UEFI Shell provides an interactive command-line environment. The shell in-
cludes such facilities as scripting and a hierarchical set of command profiles. This
allows for usages spanning in-situ field diagnostics to a full provisioning environ-
ment. As the UEFI Shell is just a distinguished UEFI application, it bears mentioning
some of the underlying capabilities of UEFI upon which the shell depends.

Shell and UEFI

The UEFI Shell is launched as a UEFI application. UEFI applications are formatted as
PE/COFF executables and are loaded into memory and relocated in memory via the
UEFI LoadImage() service and invoked via the UEFI StartImage() service. The
UEFI Shell, like any application, has two input parameters. These input parameters
include an image handle and a pointer to the UEFI System Table, respectively.

To begin with the first argument, the image handle is an opaque data object that
can be used with the UEFI protocol services to discover information, such as other
protocols associated with this handle, via querying UEFI boot services, such as locate
and handle protocols. Implementations such as EDKII typically have the image han-
dle as a pointer to the underlying data structure defining the handle, but this is an
implementation specific art and not guaranteed across other implementations. This
handle can be used to discover other protocols associated with an application, such
as the loaded image protocol. The loaded image protocol is something of a self-
pointer with respect to the image that describes where the information is loaded in
memory and other properties.

A protocol is typically published by the UEFI core or a UEFI driver. A relationship
of a protocol to the UEFI Shell is shown in Figure 2.1:

  Chapter 2: Under the UEFI Shell

Figure 2.1: Protocol database

The second argument, or a pointer to the UEFI System Table, is important in that it
provides function pointers to the boot and runtime services, along with pointers to
other GUID-annotated tables. This service set, such as the boot services, includes the
protocol services mentioned above. The boot and runtime services are a set of base
capabilities that any UEFI conformant system needs to supply to an application. Be-
yond the accessor functions of the protocol database, there are boot services for
memory allocation, events, and other system capabilities. The latter are termed ‘boot
services’ since they expire at the ExitBootServices() event. The UEFI Shell it-
self is a boot services application, so it can leverage all of these capabilities. The rela-
tionship of the UEFI Shell to the UEFI API’s are described by the UEFI specification,
this relationship is shown diagrammatically in Figure 2.2.

 Shell and UEFI  

Figure 2.2: UEFI Shell relative to the underlying PI implementation

Beyond the boot services there are another set of services called ‘runtime,’ which in-
clude UEFI variables, time, and monotonic counter support. The runtime APIs are
purposely kept simple because these APIs must be callable after Exit-
BootServices() and share the machine hardware at runtime with the hypervisor
or operating system.

A more detailed layering of the UEFI shell and the underlying implementation is
shown in Figure 2.3. A conformant shell implementation should only depend upon
the interfaces and data objects defined in the main UEFI specification. As such, the
platform-specific firmware can include but is not limited to things such as infrastruc-
ture based upon the UEFI platform initialization (PI) specification.

  Chapter 2: Under the UEFI Shell

Figure 2.3: Shell API layering

There are instances, though, where a UEFI Shell application may choose to access PI
interfaces. These include diagnostics that want to access all the application proces-
sors in a symmetric multiprocessor (SMP) system. An example of such an API includes
the EFI_MP_SERVICES protocol from volume 2 of the PI specification published by
the UEFI Forum. In leveraging an underlying PI API, however, the UEFI Shell appli-
cation is limiting its potential portability since a UEFI implementation, including the
UEFI Shell, may not have PI-conforming firmware underneath.

And finally, the cessation of UEFI boot services is shown in Figure 2.4.

Figure 2.4: Boot flow

 Evolution and Revolution  

What this means is that like many boot service capabilities, the UEFI Shell ceases to
be operational once the main operating system or hypervisor takes over.

Evolution and Revolution

The UEFI Shell is both evolutionary and revolutionary. The evolutionary aspect in-
cludes many simple firmware environments that have a command-line monitor to
send commands at the low end. At the high end, many RISC workstations have an
ability to drop into a command-line environment. As such, having a bare-metal envi-
ronment wherein raw system resources can be ‘peeked’ and ‘poked’ (e.g., use the MM
and PCI shell commands), is important for system maintenance.

The revolutionary aspect of the UEFI shell is that it provides an editing, network-
ing, and other capabilities often found in an operating system. This allows a universal
environment for diagnostics and other OS-absent applications.

DOI 10.1515/9781501505751-003

Chapter 3
What Is the UEFI Shell?

Try to be like the turtle—at ease in your own shell.
—Bill Copeland

With the advent of an environment like UEFI, it would stand to reason that a common
concept like a shell would arise. Conceptually, a shell is built “around” some aspect
of a rather complex system and provides simplified abstractions for users to gain ac-
cess to the underlying infrastructure. These users could be pieces of software (such
as scripts and applications) or they could be humans interacting with the shell in an
interactive manner.

A platform running a BIOS that is UEFI-compliant is what might be characterized
as the “rather complex item” that a UEFI Shell is built around. The UEFI standards
organization (www.uefi.org) publishes the UEFI and PI specifications, which drive
the underlying architecture of the BIOS that runs in many of today’s platforms. This
same organization has published a UEFI Shell Specification intended to guide what
one can expect from a compliant UEFI Shell environment.

This chapter talks about various concepts, such as how the UEFI Shell is abstract-
ing the underlying UEFI-compatible BIOS infrastructure, how certain concepts such
as localization are accomplished within the shell, and the various manners in which
a user can interact with the shell. It should also be noted that one of the most common
uses of a shell today is to launch programs and/or scripts to enable some automated
processing to occur. In many cases, DOS was a very common base for such types of
activity (Figure 3.1).

Figure 3.1: The program launching and script support of the UEFI Shell is providing an alternative to
what users of DOS and other shells have been using for a very long time.

The UEFI Shell is unusual in that it is not a shell that is a client of an operating system,
but is actually considered a BIOS extension. This puts the shell on par with compo-
nents that traditionally would be launched prior to an operating system such as an

  Chapter 3: What Is the UEFI Shell?

add-in device’s option ROM. Where the UEFI Shell is launched from is largely irrele-
vant, but for many platform vendors, the underlying feature set and size are im-
portant considerations since in some cases the shell may actually be contained in the
platform’s FLASH device.

What Is Contained in the UEFI Shell?

With the consideration that size and features are important to the platform vendor,
the features that are provided by a UEFI Shell are likely even more important to the
users of the shell. With this in mind, the concept of having varying levels of UEFI Shell
support became very important along with the ability for a client of the UEFI Shell to
determine what support was being provided.

What Kind of Shell Do You Have?

The concept that a UEFI Shell can vary its support can be worrisome to some, but
suffice it to say that this support is both predictable and easily dealt with. The shell is
composed of two primary classes of contents:
■ Programmatic Shell Environment. This environment is guaranteed to remain avail-

able regardless of what underlying shell level is supported by a platform that
purports to support the UEFI Shell. It is composed of the calling interfaces that
shell applications can use.

■ Script Shell Environment. This environment is the one that supports the launching
and interpreting of shell scripts. The biggest variation that one might witness be-
tween shell support levels is the enumeration of commands that are supported in
a given support level.

The shell contains an environment variable known as the shellsupport variable.
This variable can be used by shell applications as well as shell scripts to determine
what the underlying UEFI Shell’s function support is.

In Table 3.1, the various levels of shell support are listed. This illustrates how at
its simplest, the shell may be used strictly for purposes of shell applications to be
launched (no scripting services). At level 1, basic scripting support is introduced,
while level 2 simply adds a few more commands and functionality. In level 3, the con-
cept of being “interactive” is introduced. For people who are familiar with the “C:”
prompt from DOS, this interactive mode is similar in concept. Whereas in level 2,
when a script was finished processing, the shell would terminate, in level 3, the shell
provides a mode that allows the user to type at the UEFI Shell prompt.

 What Is Contained in the UEFI Shell?  

Table 3.1: UEFI Shell Levels of Support

Level Name Execute()/
Scripting/
startup.nsh

PATH? ALIAS? Inter-
active?

Commands

 Minimal No No No No None
 Scripting Yes Yes No No for, endfor, goto, if, else, endif, shift,

exit
 Basic Yes Yes Yes No attrib, cd, cp, date*, time*, del, load,

ls, map, mkdir, mv, rm, reset, set,
timezone*

 Interactive Yes Yes Yes Yes alias, date, echo, help, pause, time,
touch, type, ver, cls, timezone

Note: * Noninteractive form only

■ Execute()/Scripting/startup.nsh. Support indicates whether the Execute()
function is supported by the EFI_SHELL_PROTOCOL, whether or not batch
scripts are supported, and whether the default startup script startup.nsh is sup-
ported.

■ PATH. Support determines whether the PATH environment variable will be used
to determine the location of executables.

■ ALIAS. Support determines whether the ALIAS environment variable will be used
to determine alternate names for shell commands.

■ Interactive. Support determines whether or not an interactive session can be
started.

What!? No Shell? No Problem!

In many usage cases, bootable media is used to launch scripts or other utilities. His-
torically, the common components for bootable (removable) media were a floppy disk
with DOS on it, some scripts, and possibly some executable utilities. DOS itself had
some inherent limitations associated with a relatively weak API set compared to more
modern environments, limited access to certain memory ranges, and other miscella-
neous issues with more modern hardware environments. With the advent of UEFI sys-
tems, the same infrastructure can be launched as was done before (a DOS bootable
image), but with relatively no discernable advantage—it simply preserves what was
previously working. However, many users of bootable media (such as manufacturing
operations, diagnostics, and so on) are actively porting their DOS solutions so that
they can leverage the underlying UEFI BIOS environments.

  Chapter 3: What Is the UEFI Shell?

Coupling UEFI-based BIOS with the UEFI Shell, a user can achieve a true ad-
vancement in what was done in prior solutions since any of the prior limitations as-
sociated with the DOS environment have been eliminated. In fact, since the infra-
structure within which the UEFI Shell runs is robust, the utilities that are launched
can fully leverage all of the UEFI BIOS APIs as well as the UEFI Shell infrastructure
APIs in addition to running various sets of UEFI Shell scripts.

In some situations a user’s shell requirements are not compatible with what the
platform currently supports. For those who are trying to provide solutions (utilities,
scripts, and so on) that leverage the UEFI Shell and its environment, there are three
situations to consider:
■ When the built-in UEFI Shell does not meet the solution’s requirements. If the UEFI

Shell’s shellsupport level is insufficient for the solution provider’s needs, a copy
of a UEFI Shell might need to be carried with the solution itself.

■ When there is no built-in UEFI Shell. There may be cases where the platform does
not have a UEFI Shell built in as part of its feature set. With this in mind, the
solution provider will want to carry a copy of a UEFI Shell along with its solutions
carried on the provider’s media.

■ When the platform is not compatible with UEFI. Even though UEFI BIOS is being
adopted in a rapid manner in the industry, some platforms will have no underly-
ing UEFI support. To address this situation, Intel has provided to the open source
community something known as the Developer’s UEFI Emulation (DUET). DUET
is designed to provide a UEFI environment on a non-UEFI pre-boot system. This
is achieved by creating an UEFI file image for a bootable device, and then “boot-
ing” that image as a legacy boot. On this same bootable device/media a solution
provider can, in addition to providing UEFI emulation, provide a copy of the shell
environment as well as any other material the solution provider desires.
• This DUET infrastructure is made available for download on the companion

website associated with this book as well as being made available on the
open source website www.tianocore.org.

Figure 3.2 illustrates three common usage scenarios for the UEFI Shell. The first is
when the platform contains all the needed support for the script/utility solution, the
second is when the underlying platform shell support is insufficient, and the third is
when the platform is not UEFI-compatible.

 Programmatic Shell Environment  

Figure 3.2: Different UEFI Shell usage models. One built within the platform, and the others pro-
vided by a bootable target.

Programmatic Shell Environment

Interfaces that are callable from binary programs are what form the UEFI Shell ser-
vices. These services are what provide simplified access to various shell features and
also simplify the interactions that shell clients would have with the underlying UEFI
infrastructure. Figure 3.3 provides a high-level view of what the interactions would
be between the UEFI infrastructure, shell interfaces, and shell clients.

  Chapter 3: What Is the UEFI Shell?

Figure 3.3: The architectural view of the UEFI Shell and the underlying platform infrastructure.

Even though Appendix B has an exhaustive enumeration of the UEFI Shell script com-
mands, and Appendix C has an exhaustive enumeration of the UEFI Shell environ-
ment interfaces, this chapter covers the basic programmatic capabilities, their rela-
tionship with the underlying infrastructure, and how they are practically used.

Using UEFI Shell Commands

Two classes of operations occur within the UEFI Shell environment. One class of op-
erations runs a script file that uses built-in shell commands (such as DIR and COPY).
The other class of operations are binary programs that when launched can use a va-
riety of underlying services.

An example of this interaction would be when a script executes a DIR shell com-
mand. When doing this, the following steps occur:
■ DIR command in a script file is interpreted by the Shell Interpreter.
■ Shell Interpreter then calls a Shell Protocol function such as OpenRoot().
■ The Shell Protocol would then call a UEFI service such as the UEFI Simple File

System Protocol’s OpenVolume() routine.
■ The UEFI Simple File System Protocol would then call other routines, which

would ultimately interact directly with the hardware and return the requested
information.

 Programmatic Shell Environment  

Figure 3.4 shows how a script that uses a UEFI Shell command will in turn interact
with both the UEFI Shell interfaces and UEFI BIOS interfaces to achieve what is re-
quested. It also shows that shell applications would also interact with the underlying
UEFI Shell and UEFI BIOS interfaces.

Figure 3.4: UEFI Shell Interpreter processing a script file

Localization Support
One of the inherent capabilities that were introduced into UEFI 2.1 was the ability to
easily construct applications that can seamlessly support multiple languages. It
should be noted that the primary difference between what someone might call a
standard UEFI driver/application and a UEFI Shell application is that the latter has
knowledge of the programmatic components of the UEFI Shell infrastructure. That
being said, UEFI Shell applications can leverage the underlying localization support
in the same manner as any other BIOS component, such as UEFI Drivers and Option
ROMs.

  Chapter 3: What Is the UEFI Shell?

Interactive Shell Environment

The concept of having a shell that is interactive is almost always assumed. The stere-
otypical scenario is the command prompt where a user might type a command and
the results are printed to the screen (either locally or through a remote connection).
With the advent of the shellsupport environment variable and the concept that a shell
might have varying levels of support, it should not always be assumed that a shell
will be interactive. In fact, it might be very common, based on the type of shell
shipped with a given platform, that a script would launch and the shell environment
would be closed as soon as the script was terminated (whether through a user-initi-
ated event or the script completing).

In the interactive shell environment, the usage model for the UEFI Shell is similar
to what would traditionally be thought of with most shells. Some of the basics that
will be discussed are the launching of external binary applications, launching UEFI
Shell scripts, and how the various UEFI Shell commands would ultimately resolve
into programmatic interaction with the underlying UEFI Shell infrastructure as well
as potentially interacting with the underlying UEFI firmware and hardware itself.

Scripting

Depending on the reader’s background, three common terms might be used to repre-
sent this definition, “a list of commands that can be executed without requiring user
interaction.” These terms are scripts, macros, or batch files, and to simplify things,
this book will try to settle on the term scripts when referring to the aforementioned
definition.

The UEFI Shell environment is responsible for parsing the script file and inter-
preting the contents sufficiently to understand what type of action it is being re-
quested to proxy. Some of the basic operations that this environment would need to
accomplish would be:
■ Execute UEFI Shell commands
■ Chaining of UEFI Shell scripts
■ Launch UEFI Shell applications
■ Launch UEFI applications/drivers

Basic Overview of Commands and How They Interact with Shell Environment
Figure 3.5 illustrates the various components that the UEFI Shell interpreter would
interact with when processing a script file. In this illustration, we see an example of
a script-based command being parsed by the interpreter itself. Ultimately the inter-
preter (depending on the command being parsed) would potentially end up calling

 Interactive Shell Environment  

some underlying UEFI firmware interfaces. In an example where a UEFI Shell appli-
cation was launched, it in turn may end up calling programmatic UEFI Shell inter-
faces, which would then potentially interact with some underlying UEFI firmware in-
terfaces.

Figure 3.5: UEFI script interacting with the shell environment

1. Shell Script Interpreter parses each line of the script.
2. LS command is recognized and passed to Shell’s LS handler.
3. The programmatic handler of the LS command reads the command-line parame-

ters that were passed to it.

  Chapter 3: What Is the UEFI Shell?

4. Using the UEFI Shell infrastructure, the parameters are associated with a partic-
ular set of UEFI firmware interfaces and the UEFI Shell calls these firmware in-
terfaces.

5. The UEFI compatible firmware processes the request and in turn communicates
with the underlying hardware that was ultimately referenced by the script.

6. This data request is fulfilled and eventually returned back to the UEFI Shell inter-
preter and the results are processed by the LS handler.

7. The script/user is then made aware of the results of the command having been
processed.

Chaining of Script Commands
It is common practice for script files to execute shell commands, which for purposes
of the script, are considered part of the shell environment. However, it is also common
practice to launch commands or other scripts in shell environments. The UEFI Shell
environment is no exception. The concept of one script launching another is often
termed chaining, and as long as the target script is accessible, a script can choose to
launch any other script it has been programmed to launch.

However, there are some definite distinctions between launching a text-based
script and launching a binary program. Most of these distinctions have to do with how
arguments are passed and what is or isn’t accessible to a particular target program.
Luckily enough, for most scripts, these distinctions are completely invisible and im-
material. Since many users who are creating binary programs will launch these pro-
grams with the UEFI Shell, they may want to understand how some of these interac-
tions would work (for example, getting command-line arguments). The following
section talks a bit more about the launching of binary programs and covers some of
these underlying interactions.

Program Launch

It should be understood that the UEFI Shell is running within the scope of a UEFI-
based firmware environment. This means that the shell itself is a UEFI-based compo-
nent that complies with the descriptions that are laid out in the UEFI specification.
That being said, binary programs launched by the shell will also be UEFI compatible.
Since we are introducing the topic of launching UEFI programs, it should be noted
that three distinct types of programs that would typically launched by the UEFI Shell:
■ UEFI Driver – This is a UEFI-compliant binary program that would follow the UEFI

specification driver model. Upon launch, this program may remain in memory
and install protocols or services that also remain resident in the system.

■ UEFI Application – This is a UEFI-compliant binary program. Upon exit, this ap-
plication will be unloaded from memory.

 Interactive Shell Environment  

■ Shell Application – This is a UEFI-compliant binary program. This program has
the same primary characteristics as a typical UEFI application with the addi-
tion of having knowledge of how to interact with the underlying UEFI Shell
environment.

Even though all of these programs are compliant with the UEFI specification, several
characteristics may be unique to UEFI Shell applications.

Argument Passing and Return Codes
When launching a shell application, there is an assumption that parameters would
be able to be passed to the application in some fashion. Unlike many conventions
where an argument count and array of argument values are directly passed to an ap-
plication, in a UEFI environment the standard entry point does not consist directly of
this kind of data.

When an application is launched in UEFI, sufficient data is passed to the appli-
cation for it to gain access to the essential components of the UEFI environment. Fig-
ure 3.6 shows this standard entry point and how the data contained within this will
also provide access to other essential material in the UEFI environment.

Figure 3.6: Anatomy of an application launch

  Chapter 3: What Is the UEFI Shell?

1. This item illustrates what the standard entry point for any UEFI-compatible bi-
nary application or driver looks like. This is the fundamental starting point for all
UEFI compatible programs which exposes the underlying UEFI firmware ser-
vices.

2. During the initialization of a UEFI program, the standard entry point would be
used to access the standard runtime and boot services that the UEFI-compatible
firmware provides.

3. In most shell-aware applications, there would be either a library or macro which
would be used to provide access to the underlying shell protocol interfaces. This
library/macro isn’t required by the UEFI shell specification, but would commonly
be found in many of the available shell-aware programs.

4. In shell-aware applications, the availability of the functions defined in the
EFI_SHELL_PROTOCOL can be leveraged.

Figure 3.7 shows three main components:
■ Standard Entry Point – This is the fundamental starting point for all UEFI-com-

patible programs that exposes the underlying UEFI firmware services.
– Image Handle – When an application is loaded into memory for execution,

this value will be the unique identifier for the application.
– System Table – The table that contains a variety of required data and also

provides a means to acquire access to the runtime and boot services that
UEFI provides.

■ Runtime and Boot Services – These are the callable interfaces that can be used to
interact with the UEFI environment. These interfaces encompass several general
classifications:
– Task Priority Services
– Memory Services
– Event/Timer Services
– Protocol Services
– Image Services
– Time Services
– Variable Services
– Miscellaneous Services

■ Shell Parameters Protocol – This is the protocol that is used in a shell environment
to describe all of the command-line parameter data as well as standard handles
for output, input, and error. An instance of this protocol is installed on the Image
Handle of the application.

 Interactive Shell Environment  

//
// Standard Entry description for UEFI app or driver
//
EFI_STATUS
InitializeApp (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

//
// Excerpt of the above-referenced UEFI System Table
//
typedef struct _EFI_SYSTEM_TABLE {
 EFI_TABLE_HEADER Hdr;

.

.

.
 //
 // Gain access to UEFI Runtime services
 //
 EFI_RUNTIME_SERVICES *RuntimeServices;

 //
 // Gain access to UEFI Boot services
 //
 EFI_BOOT_SERVICES *BootServices;
.
.
.
} EFI_SYSTEM_TABLE;

//
// This protocol is installed on the application’s
// ImageHandle.
//
typedef struct _EFI_SHELL_PARAMETERS_PROTOCOL {
 CHAR16 **Argv; // Array of arguments
 UINTN Argc; // Argument Count
 EFI_FILE_HANDLE StdIn; // Standard Input
 EFI_FILE_HANDLE StdOut; // Standard Output
 EFI_FILE_HANDLE StdErr; // Standard Error
} EFI_SHELL_PARAMETERS_PROTOCOL;

Figure 3.7: Standard UEFI Entry point

  Chapter 3: What Is the UEFI Shell?

Figure 3.8 is an example of how one might leverage the standard entry point data to
acquire information like the passed in command-line parameters:

//
// Standard Entry description for UEFI app or driver
//
EFI_STATUS
InitializeApp (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 EFI_STATUS Status;
 EFI_SHELL_PARAMETERS_PROTOCOL ShellParameters;
 CHAR16 *FilePathName;

 //
 // Search for the Shell Parameters Protocol which was
 // installed on the application’s ImageHandle.
 //
 Status = SystemTable->BootServices->HandleProtocol (
 ImageHandle,
 &ShellParametersProtocolGuid,
 &ShellParameters
);

 //
 // The first parameter is the executable file path
 // name. Subsequent parameters reflect the processed
 // command-line parameters
 //
 FilePathName = &ShellParameters->Argv[0];

.
.
.
 //
 // When exiting an application, there will be a status
 // returned. The UEFI Shell environment will reflect
 // this status in the LastError environment variable so
 // that scripts can see what the last error was
 // produced by a given application or shell command.
 //
 return Status;
}

Figure 3.8: Retrieving command-line data

 Interactive Shell Environment  

Since many underlying functions such as acquisition of command-line data are nor-
mally abstracted by library services, the example in Figure 3.8 is good for showing
how some of these fundamental pieces of data are interrelated. This is especially true
since the ability to acquire the entry point for protocol services is key to creating a
UEFI-aware application; and knowing how to acquire such data solely from the com-
monly passed-in entry point data will help not only for UEFI Shell programming but
for any UEFI programming.

When programs are launched, they will have their returned status codes analyzed
by the UEFI Shell environment and have an internal copy of the LastError environ-
ment variable updated with this result. Figure 3.8 shows that when a program exits
(thus returning a status), the UEFI Shell environment will automatically be updated
so that when a script checks %LastError%, it will automatically be reflected with this
returned status.

File-System Abstractions

In a traditional operating system where scripting is prevalent, a simple abstraction
for file systems are usually available (such as, “C:”or “D:”). The UEFI Shell environ-
ment is no different than these traditional operating systems. In fact, it goes one step
further in that it provides clear abstractions for LBA-based (sector-based) accesses
through a block I/O interface, and it provides abstractions for file-system based ac-
cesses through the disk I/O interface. Figure 3.9 introduces two common UEFI proto-
cols that have to do with abstracting storage devices.

In Figure 3.9, references to BLK and FS are used to note either a block or file-
system interface. These interfaces are constructed during the UEFI Shell environ-
ment’s initialization. These text-based references are used as simply text notations
for various aspects of storage devices. When the UEFI Shell (and especially the MAP
command) analyzes the UEFI environment, it searches for instances of
EFI_BLOCK_IO_PROTOCOL. This is a UEFI protocol that provides an LBA-based
abstraction for a storage device. Upon discovery, it will tag each discovered instance
with a unique name. These interfaces are a logical abstraction, which means that they
abstract a range of physical sectors on some media, and are not necessarily providing
access to the entire media.

  Chapter 3: What Is the UEFI Shell?

Figure 3.9: File System Abstractions in the UEFI Shell

In the example of BLK0, this is an abstraction used to designate the entire disk. That
simply means that when a command references BLK0, the first sector is the real first
sector of that disk, while the last sector is the real last sector of the disk. This would
contrast with the usage model of a partition’s BLK instance such as BLK1.

In the example, BLK1 is associated with the data range for a particular partition
entry. That simply means that when a command references BLK1, the first sector is
the first data sector of that partition (not the disk), while the last sector is the last
sector of the partition.

In addition to the discovery of block devices during the UEFI Shell initializa-
tion, the UEFI Shell will analyze the UEFI environment looking for instances of
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL. This is a UEFI protocol that provides
abstractions for recognized file-systems. Upon discovery, it will tag each discovered
instance with a unique name. It should be noted that this protocol will not be es-
tablished if the formatting of the media or partition is not recognized. For instance,
if a media is formatted as a FAT32 file system, a UEFI system will layer an
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL instance.

 Interactive Shell Environment  

Shell Script Resolves into a UEFI Firmware Action

When the UEFI Shell is executing a script, a lot of data needs to be interpreted. Figure
3.10 shows a very common example where a statement such as

COPY FS0:\Source.txt FS0:\Destination.txt

is interpreted by the UEFI Shell environment. The UEFI Shell initiates several steps
during this interpretation:
1. Determine to what command the UEFI Shell needs to pass this data. In this case,

the COPY command is recognized and used.
2. Prior to launching the COPY command, install the EFI_SHELL_PARAME-

TERS_PROTOCOL on the target command’s image handle. (Recall that this is
used for understanding the command-line parameters)

3. Launch the COPY command.

Figure 3.10: From script to hardware interaction

The target command will then be responsible for several actions to complete the re-
quested process.
1. The called command (for example, COPY) will retrieve the command-line param-

eters to determine what it is being asked to do.
2. Since the COPY command is a shell-enabled command, it will use the appropriate

shell interface commands to accomplish its action. For instance, to read/write a par-
ticular file (for example, FS0:\Source.txt) it will likely use the
EFI_SHELL_PROTOCOL.OpenByFileName() function to obtain a file handle.

3. Once a file handle is obtained, the same protocol has worker functions to read or
write to that file (ReadFile/WriteFile).

4. Various other miscellaneous activities would occur.

The UEFI Shell environment is ultimately responsible to handling the underlying
functions associated with EFI_SHELL_PROTOCOL. When calls are made to the
functions in this protocol, several actions end up taking place.
1. When a command (such as, COPY) calls the OpenByFileName() function to

obtain a file handle, one of the key things is to determine where the file physically

  Chapter 3: What Is the UEFI Shell?

resides. This is determined by interpreting the passed-in data (for example,
FS0:\Source.txt)

2. The UEFI Shell environment will have an internal mapping of the file systems that
have been recognized (for example, FS0) and it can in turn call the protocol
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL associated with that text-based
shortcut.

3. When calling the aforementioned simple file-system protocol, it would pass in
the path and file name (such as \Source.txt) and see if the file can be discov-
ered.

4. If found, the UEFI Shell would have an assigned handle for this opened file. This
handle would later be used by subsequent calls to the UEFI Shell and easily as-
sociated with the physical file. When asked to read or write to such a handle, the
appropriate UEFI interfaces can then be called to complete the request.

DOI 10.1515/9781501505751-004

Chapter 4
Why We Need an Execution Environment
before the OS

In every phenomenon the beginning remains always the most notable moment.
—Thomas Carlyle

As mentioned in Chapter 3, quite a number of software components on the platform
execute prior to the operating system taking control. The state of the machine prior to
the operating system runtime is generally referred to as the pre-OS state and can be
broken down into many details. Why is the pre-OS state such a rich environment,
what are all of the software components on the machine, and what do they do? These
are some of the questions this chapter answers. This chapter provides a review of the
states of a platform and the activities that occur therein. This review provides a foun-
dation for successive chapters and their deeper treatment of the items discussed.

Evolution of a Machine

To begin with, the machine restarts in a nascent state. At this point of the machine
evolution, there is no memory of I/O devices available. There is just a flash read-only
memory (ROM) device on the system board from which the initial code is fetched. This
code contains various modules that configure the I/O devices, memory, and system
fabric. Figure 4.1 shows an example platform and its flash ROM container.

Figure 4.1: System Board with Flash

  Chapter 4: Why We Need an Execution Environment before the OS

The flash ROM is manufactured as part of the system board. The executable modules
within this device have a priori knowledge of the platform and its various compo-
nents. The flash ROM contents are not intended to be third-party extensible; they are
created and updated under the authority of the equipment manufacturer.

The Platform Initialization Flow

A series of executable modules and data files are organized in the flash; these elements
abstract basic capabilities and the initialization functions listed above. Figure 4.2 shows
the relationship between the types of elements that are board- and module-specific.
The important distinction is that a series of modules initially execute in what is re-
ferred to as the Pre-EFI Initialization or PEI phase of execution.

The bulk of PEI executes in place (XIP) and uses some temporary memory stored
on the platform as a call-stack and heap. This store can include but is not limited to a
portion of the processor cache used in such a way that the accesses are not evicted.
This use of the cache as RAM (CAR) allows for running PEI modules built from C code
using standard compilers. But the limitations on this uncompressed XIP PEI code and
paucity of CAR means that the minimum amount of activity needs to occur in PEI,
namely “initialize useable main memory, discover the DXE core file, and invoke
DXE.”

Figure 4.2: Layered Modules in Flash

 The Platform Initialization Flow  

PEI is the lowest level of elements shown in Figure 4.2 and runs first. Once PEI has
enabled a sufficient amount of memory, however, the Driver Execution Environment
(DXE) is invoked from the flash ROM. The DXE elements are richer in capability and
do not suffer from the space/performance constraints of PEI since they have ample
system memory. Figure 4.2 shows discrete, separable components. This separation is
accomplished by having the modules communicate with the PEI core via the PEI core
services, such as memory allocation and service registration/discovery. The executa-
bles themselves are referred to as PEI Modules (PEIMs) and can invoke the PEI core
services, publish interfaces for another PEIM to leverage, namely a PEIM-to-PEIM in-
terface (PPI), or bind to other PPIs. The PPIs are named by a Globally Unique Identifier
(GUID) such that APIs and data associated with a PPI can evolve as new technology,
buses, and capabilities evolve.

The PEI Services table is shown in Figure 4.3.

256 typedef struct _EFI_PEI_SERVICES {
257 EFI_TABLE_HEADER Hdr;
258 //
259 // PPI Functions
260 //
261 EFI_PEI_INSTALL_PPI InstallPpi;
262 EFI_PEI_REINSTALL_PPI ReInstallPpi;
263 EFI_PEI_LOCATE_PPI LocatePpi;
264 EFI_PEI_NOTIFY_PPI NotifyPpi;
265 //
266 // Boot Mode Functions
267 //
268 EFI_PEI_GET_BOOT_MODE GetBootMode;
269 EFI_PEI_SET_BOOT_MODE SetBootMode;
270 //
271 // HOB Functions
272 //
273 EFI_PEI_GET_HOB_LIST GetHobList;
274 EFI_PEI_CREATE_HOB CreateHob;
275 //
276 // Firmware Volume Functions
277 //
278 EFI_PEI_FFS_FIND_NEXT_VOLUME2 FfsFindNextVolume;
279 EFI_PEI_FFS_FIND_NEXT_FILE2 FfsFindNextFile;
280 EFI_PEI_FFS_FIND_SECTION_DATA2 FfsFindSectionData;
281 //
282 // PEI Memory Functions
283 //
284 EFI_PEI_INSTALL_PEI_MEMORY InstallPeiMemory;
285 EFI_PEI_ALLOCATE_PAGES AllocatePages;
286 EFI_PEI_ALLOCATE_POOL AllocatePool;
287 EFI_PEI_COPY_MEM CopyMem;
288 EFI_PEI_SET_MEM SetMem;

  Chapter 4: Why We Need an Execution Environment before the OS

289 //
290 // Status Code
291 //
292 EFI_PEI_REPORT_STATUS_CODE PeiReportStatusCode;
293 //
294 // Reset
295 //
296 EFI_PEI_RESET_SYSTEM PeiResetSystem;
297 //
298 // Pointer to PPI interface
299 //
300 EFI_PEI_CPU_IO_PPI *CpuIo;
301 EFI_PEI_PCI_CFG2_PPI *PciCfg;
302 EFI_PEI_FFS_FIND_BY_NAME FfsFindFileByName;
303 EFI_PEI_FFS_GET_FILE_INFO FfsGetFileInfo;
304 EFI_PEI_FFS_GET_VOLUME_INFO FfsGetVolumeInfo;
305 EFI_PEI_REGISTER_FOR_SHADOW RegisterForShadow;
306 } EFI_PEI_SERVICES;
307
308 //
309 // PEI PPI Services
310 //
311 typedef
312 EFI_STATUS
313 (EFIAPI *EFI_PEI_INSTALL_PPI) (
314 IN CONST EFI_PEI_SERVICES **PeiServices,
315 IN CONST EFI_PEI_PPI_DESCRIPTOR * PpiList
316);
317
318

Figure 4.3: PEI Services Table and Example Function Declaration of One of the PEI Services

In Figure 4.3, lines 257–307, show the full PEI Services table. Lines 310–317 show one
function declaration from the PEI Services table, namely the EFI_PEI_INSTALL_PPI
service. This latter API is used by a PEIM to publish an interface from its PEIM so that
other PEIMs can discover and bind to the interface, respectively.

UEFI Transitions

Figure 4.4 shows the boot flow when PEI hands off into DXE. The early portion of the
diagram shows the time evolution of the PEI, which then passes control into the DXE
phase. The DXE phase invokes a series of drivers that orchestrate the possible testing
of memory not covered by PEI, discover and allocate resources for I/O buses like PCI,
initiate other buses like USB, and so on. Once the system fabric has been initialized and

 UEFI Transitions  

basic platform capabilities are available, the DXE infrastructure provides a set of inter-
faces that conform to the UEFI specification. This is shown by the line in Figure 4.4 that
reads UEFI APIs. At this point, DXE passes control to the Boot Device Selection (BDS)
interface of the platform firmware and the boot manager capability of the UEFI spec-
ification takes control.

Figure 4.4: Time-Based View of Boot

All of the activity up to this point has been orchestrated by components that are under
the authority of the system board or platform supplier (PS). The PEI and DXE compo-
nents should be installed by the PS authority with suitable protections on the flash
part and should not be extensible by third parties. In other words, all of the code run-
ning in PEI and DXE should come from the PS. Once BDS has been invoked and the
UEFI APIs area is available, however, code from third parties, such as UEFI drivers in
option ROMs and operating system loaders or applications from the UEFI system par-
tition may be invoked.

Within this flash part are a series of components that successively initialize more
of the platform state. The flash ROM with the boot UEFI code is only one portion of
the platform, though. There are several other components on the system board,

  Chapter 4: Why We Need an Execution Environment before the OS

whether soldered down or attached via cables. These include block devices, consoles,
and networking devices.

The state of these platforms, especially the block devices that have things like the
UEFI system partition with the operating system loader, can be installed at various
points. The various states of the platform and its configuration will be briefly re-
viewed here but treated with more detail in subsequent chapters.

States of a Platform

Within this flash part are a series of components that successively initialize more of
the platform state, as shown in Figure 4.5. State1 in shown in Figure 4.6 can include
the raw system board with just the boot flash ROM and no attached peripherals.

Figure 4.5: Various States of a Platform’s Configuration and How They Evolve

In state1, the platform will not be configured with platform firmware or the operating
system. We refer to this as raw, composed of just the CPU, chipset, RAM, and flash
part. The latter will not be programmed with any of the binary code content, nor
would other reprogrammable elements on the platform, such as EEPROM’s or device
flash components.

 States of a Platform  

Figure 4.6: State1: Raw Platform

This raw system board is typically put into a box or integrated into a chassis by a
vendor, during which time the peripherals may be added. We refer to this as state2,
shown in Figure 4.7. At this point, there is typically no information on the added hard
disk.

Figure 4.7: State2: System Board with Peripherals

  Chapter 4: Why We Need an Execution Environment before the OS

State2 may evolve in the vendor factory (for a fully integrated system) or at a value-
added reseller into state3. State3 entails installing the operating system on the ma-
chine. During state2 some vendor tests may be run in order to ensure the physical
integrity of the system.

In addition, this type of deployment isn’t limited to a single system board. A blade
server in a rack can also be the target of the states of configuration described herein,
as shown in Figure 4.8.

Figure 4.8: Blade server in a server rack

 Readiness of UEFI  

Readiness of UEFI

At this point UEFI and the PI firmware have discovered the hardware complex, but
there is still no operating system. State3 entails “imaging” an operating system onto
the hard disk via a locally attached device, such as a CD-ROM drive, or via a network
boot, as shown in Figure 4.9. The act of imaging an OS is to write it directly to the
logical block addresses of the storage media with a file system intermediary.

Figure 4.9: Network Boot

The network boot case is important for both manufacturing flow, when the final disk
image is sent onto the newly built machine, and also for live deployment. In the latter
case, a diskless client machine that boots an IT-authorized OS image each day, or a
blade server that only has memory and CPU elements but requires loading the
runtime OS image from the server area network (SAN), both entail the use of the plat-
form networking capabilities.

The manufacturing case of network boot is valuable since the build-to-order ma-
chine may have the user select one from various operating system options, including
Microsoft Windows or Linux. This final stage of manufacturing when the OS image is

  Chapter 4: Why We Need an Execution Environment before the OS

transferred onto the disk via UEFI networking allows for a no-touch, remote configu-
ration of the product.

As noted above, the UEFI interactions occur once the PEI and DXE have exe-
cuted. The rich set of UEFI drivers and applications occur in the flow as shown in
Figure 4.10.

Figure 4.10: Flow of the System

The UEFI drivers can be loaded from the UEFI system partition or from a host-bus
adapter (HBA), such as a PCI SCSI or NIC. The UEFI applications can include execut-
ables integrated into the flash ROM, on the UEFI system partition, or loaded across
the network. These applications include diagnostics, operating system loaders, and
the UEFI Shell.

 Readiness of UEFI  

The most important activity in state3 is to install the operating system on the disk.
Recall from state2 that the disk was attached, but at this point it contained blank log-
ical block addresses.

During state3, the platform manufacturer is still in control of the system. An op-
erating system installer can run from the factory environment in order to deposit the
OS loader, kernel, and support files on the disk, as shown in Figure 4.11.

Figure 4.11: Disk with OS Installation

At this point, a complete system, such as a server or a laptop would ship to an end
user. We refer to the end user as the owner of the platform. The owned platform, in
our state diagram, now refers to state4. The owner can choose to run diagnostics, in-
stall additional operating systems, or reinstall the former OS as a repair or upgrade
operation.

At state4, the ability to run the UEFI Shell, including diagnostics such as reading
the SMBIOS tables or other asset information is still valuable. The UEFI Shell exposes
all system memory and hardware resources. An end user may choose to boot into the
UEFI Shell during the life of his or her platform in order to run some memory test or
disk diagnostics. Such exhaustive testing cannot easily occur during the OS runtime
since a failure in memory or I/O surfaces in unpredictable ways during an OS crash.
Also, attempting to run such diagnostics in situ during OS runtime can lead to various

  Chapter 4: Why We Need an Execution Environment before the OS

Heisenbugs (bugs where the observing agent and system under observation interact,
named after Heisenberg’s Uncertainty Principle, which noted that momentum and
position of an electron could not be precisely measured at the same time because the
act of observing the electron would perturb it).

Migration Using the UEFI Shell

Another important application of the UEFI Shell is to facilitate the migration of one
machine to another. The scenario is as follows:
■ A single machine is configured manually or via UEFI Shell script by IT per their

requirements
– This is referred to as the “golden” machine
– The configuration of the golden machine is sent to a central network or rack

repository, such as a Chassis Management Module (CMM)
■ The golden machine is then attached to the network

– Imagine the scenario below where the golden machine is a blade server in a
rack

■ The rack of blades is activated and a UEFI application runs on each of the uncon-
figured blades
– Each blade talks to the well known network authority, such as CMM, to get

the configuration
– The UEFI Shell application on each blade applies the golden configuration

■ The act of collecting the configuration on each of the blade’s configuration appli-
cation actions will apply generic settings, such as OS boot targets, language
codes, and other UEFI-defined specification options, but it will elide certain
blade-specific options, such as the local blade MAC address

■ Once the configuration of all the blades has occurred in the pre-OS state, the rack
can be restarted and the successive blades booted to their locally attached stor-
age or a network-based boot target via a PXE or ISCSI boot

This golden machine cloning or migration of the machine personality is some-
thing that must occur prior to the OS launch, and entails a state3 to state3 migra-
tion or state4 to state4 migration across the different computation units, as shown
in Figure 4.12.

 Going Forward  

Figure 4.12: Migration of UEFI settings from one blade to another

Even though this example shows a migration across a series of blades in a rack, it
would have been equally applicable across a class of enterprise client machines,
handheld devices, or other appliances. The key common elements across these plat-
forms are the UEFI-based firmware, the UEFI Shell, the ability to reach the common
repository of settings, and the cloning application.

Going Forward

Subsequent chapters provide guidance on how UEFI-based technology such as the
UEFI Shell can assist in these latter state evolutions of the platform. For example,
configuration in state4 can entail enrollment of additional devices, such as “taking
ownership” of Trusted Platform Modules (TPMs), the cloning of machines so that an
enterprise owner of a large number of units can personalize them for particular busi-
ness needs, or further storage options can be applied, such as configuration of a Re-
dundant Array of Independent Disks (RAID) with additional options.

DOI 10.1515/9781501505751-005

Chapter 5
Manufacturing

“Give me six hours to chop down a tree and I will spend the first four sharpening the axe.”
― Abraham Lincoln

The motherboard is finished. Screws hold it down within the shiny new case. Memory
is inserted. Peripherals secured. Cables run from source to destination. Firmware im-
age flashed. Enclosure sealed. Power applied.

Now what?
It’s a box. A very complicated box, yes. Yet still a box. There isn’t much there yet.

The firmware is just sitting there on a flash chip and a CPU anxious to execute that
firmware. Then the spark of life as power is applied and line after line of prepro-
grammed instructions carry the system forward until…until what?

The box doesn’t know. It is a tabula rasa—a clean slate—waiting to be given a
purpose. While manufacturing starts with the correct placement and connection of
electrical components, it finishes by ensuring that the assembled hardware is pre-
pared for use.

Before that box can be useful, the box must be:
■ Provisioned. The hard drive must contain a copy of the golden image—the latest

validated operating system and pre-installed applications. See Chapter 6, “Bare
Metal Provisioning,” for more information.

■ Configured. The firmware must contain the golden configuration—the optimized
settings for the specific hardware configuration and target operating system. See
Chapter 7, “Configuration of Provisioned Material,” for more information.

■ Tested. The hardware must quickly pass system and subsystem functionality
tests before leaving the factory. See Chapter 8, “The Use of UEFI for Diagnostics,”
for more information.

This is not a book about manufacturing, which is a vast subject in and of itself. But
even the cursory analysis in this chapter shows how the UEFI Shell can play a valua-
ble role in helping each box pass through these stages in the factory reliably and
quickly. This chapter focuses on the vital role that manufacturing tools can play in
making your product successful.

Throughput

Speed is essential. With 10 or 100 or 1,000 boxes the speed of testing, configuring,
and provisioning each box is not a significant factor. But with 1,000,000?

  Chapter 5: Manufacturing

Take a single hypothetical assembly line that runs for 24 hours a day where each
box takes only 5 minutes to manufacture. One million boxes means 3,472 days or
slightly over 9.5 years. Each additional second for a single box adds almost 12 days to
the length of the production run. Consider that even with 100 such manufacturing lines,
it is still over one month of non-stop, around-the-clock, no-down-time factory effort.

There are no more dreaded words than “line down.” For a firmware engineer, a
line down issue means travel to the factory floor on the next available flight, no sleep,
and hourly executive management status reports. Why? Because any delay means
idle people and production equipment, delayed product launches, delayed delivery
schedules, and delayed sales.

For many companies, the manufacturing environment is still Microsoft’s MS-
DOS, or one of the various alternatives (PC-DOS, DR-DOS). Companies (and engi-
neers!) are risk-averse: they don’t like to change what has been working. Considera-
ble expertise has been developed over time. Special-purpose tools have been created
for a company’s specific needs. Manufacturing-line servers that manage the whole
process often have a fragile relationship with those tools. So, why break what works?

The trouble is that Microsoft hasn’t updated MS-DOS in over 20 years (version
6.22, 1994), and it and the related tool chains are moribund. Many times it is hard to
even find them, and precious floppy disks are hoarded. Even more significant: it is
hard to find engineers who understand the unique APIs and batch file syntax of DOS
and the quirks of the 16-bit C compiler included with Visual Studio 1.52 (we are now
at Visual Studio 14.0!). Python? Forget about it! More than 4GB (much less 640KB)?
Unlikely!

Many alternatives have been proposed, from Windows PE to various versions of
Linux, but the substantial hardware requirements for these environments makes it
likely that the environment itself will be configured improperly.

The UEFI Shell provides a unique environment for testing the boxes at an early
stage because:
■ The UEFI Shell is powerful, including a full scripting language, logging capabili-

ties, and access to the UEFI driver model. It is optimized for working without an
attached storage device.

■ The UEFI Shell is small. Some implementations require as little as 100KB of flash
space. This means it can be burned into the flash device during the manufactur-
ing process without requiring a larger flash device. UEFI Shell applications can
be stored in the flash, on external storage devices or on a network server, ac-
cessed via TFTP, FTP or HTTP.

■ The UEFI Shell has a fast boot time. This allows critical seconds to be shaved off
of the testing time, since there is no wait for the hard drive to spin up or the net-
work download to complete.

■ The UEFI Shell has unrestricted hardware access—including access to all CPU
cores and threads, all hardware registers, all system memory and all hardware
interrupts.

 Manufacturing Test Tools  

■ The UEFI Shell has few hardware dependencies. Basically, if memory, the timer,
the timer interrupt, and a console device are working, the UEFI Shell is working.
That means the UEFI Shell applications can test more.

■ The UEFI Shell supports the latest hardware, including more than 4GB of
memory, PCI Express, USB 3.x, and more. Since it runs directly on top of UEFI, it
has access to all of the devices that UEFI does.

The UEFI Shell provides a complete, Posix-compliant C library and supports dozens
of toolchains, including every major version of Microsoft’s Visual Studio and GCC.
This allows manufacturing tools to be migrated easily from the current manufactur-
ing environment to the UEFI Shell.

Also, the UEFI Shell supports multiple file systems, including FAT12/16/32 and El
Torito (used on optical media), and there are multiple sources for UEFI support of
NTFS, EX4 and more.

Finally, the UEFI Shell shares many development principles with UEFI itself,
which allows engineers who are an expert in one to also develop code for the other.

Manufacturing Test Tools

Testing plays a big part in the length of time that a box stays on the manufacturing
line. The raw box may have defects. These defects may appear consistently or sporad-
ically. The earlier in the manufacturing process these defects are detected, the less
time is wasted on that box.

Some test failures only occur on some boxes. The testing phase also detects pat-
terns among failing boxes, such as shared faulty components, shared malfunctioning
assembly equipment, or shared suppliers. Then steps can be taken to correct the prob-
lems, possibly through something as simple as a modified configuration, a corrected
process, or a firmly inserted cable.

Before the manufacturing line started, there was a golden system. Poked and
prodded by technicians and firmware engineers, it passed every test thrown at it. The
thousands or tens of thousands, or hundreds of thousands that follow must have the
same level of quality. Will the other boxes maintain this level?

After the box has been put through circuit testing, making sure that there is con-
tinuity for the signals, the new box is put through tests to verify that it functions as
expected. Since the UEFI Shell has access to the UEFI networking stack, a simple
script downloads these tests from a network server on the factory floor, executes
them, and then sends the log back to the network server. The network server quickly
scans the log for errors and, if detected, flags the box and alerts the supervisor.

Some of the tests require more time, or require special environments, or are less
likely to occur (but expensive if they do). Rather than hold up all of the manufacturing
lines, a sample of the boxes from each of the lines is set aside. In the initial runs, all

  Chapter 5: Manufacturing

units go through this more intensive testing. Later, during volume production, the
sample size is reduced.

Some of these tests are long-run tests, consisting of repeating a single action over
the course of thousands of reboots. For example, entering the standby or power-off
state repeatedly to stress the hardware and the firmware. Some of these tests are en-
vironment tests, consisting of exposing the system for hours or days to high humidity,
low humidity, high temperature, and low temperature. Some of these might be sub-
system tests, such as memory, which are prone to failure because of slight variations
in manufacturing lines, or component supplies.

The good news is that, if these failures can be isolated and diagnosed, many times
a UEFI firmware-level fix can be implemented and then that UEFI firmware image can
be fed back into the process. In addition, the update can be applied to those units that
were diverted because of the issues found.

These benefits are not just reserved for the original equipment manufacturers.
Other companies that provided integrated solutions, where they take a box and add
specific peripherals, operating systems, components and applications can use the UEFI
Shell to make sure that all of the systems they ship have the correct configuration by
updating the firmware, checking the installed devices against a known-good list, con-
figuring those devices, and provisioning the hard drive, all from the UEFI Shell.

Hardware Access with Manufacturing Tools

When writing tests during manufacturing, you need access to different levels of in-
formation or control. DOS gives you one level of control: INT 0x21 for the file system,
and legacy BIOS gave you one more level of control: INT 0x13 for block I/O (or INT
0x10 for video). Of course, a library like the C library could abstract this, but it could
not give you more control.

So your application looks something like Figure 5.1:

Figure 5.1: DOS Application Hardware Access

 Hardware Access with Manufacturing Tools  

If your application needed more control, it must have intimate knowledge of the file sys-
tems, partitions, buses, and devices. With UEFI Shell applications, however, applications
have access to the same file system level abstractions and block I/O abstractions that DOS
offers. But they also have access to so much more, as shown in Figure 5.2:

Figure 5.2: UEFI Application Hardware Access

Through the use of the UEFI programming model, it is possible to enumerate all of
the devices of a specific type in the system. UEFI provides a standard data structure,
the device path, which describes exactly how a device is attached to the box. The de-
vice path can be walked all the way from the host bus through the block device to the

  Chapter 5: Manufacturing

file system and even to an individual file. This gives numerous options for a UEFI
Shell application so that it can insert its test at exactly the right level of abstraction.
■ Shell I/O: The UEFI Shell itself provides file system mappings (that is, FS0:) for

each of the mounted devices in the system.
■ File System I/O: UEFI abstracts access to the file systems installed in each parti-

tion of each device through the use of the Simple File System protocol. Using this
information, it is possible to manipulate the one or more file systems installed on
a particular device.

■ Partition I/O: UEFI abstracts access to each partition on a device as a logical block
I/O device using the Block I/O protocols. It also gives byte-oriented access to the
device via the Disk I/O protocols. So a UEFI Shell application can easily read and
write the contents of a storage device partition.

■ Block I/O: UEFI abstracts access to each storage device via the physical Block I/O
and Disk I/O protocols. So a UEFI Shell application can easily read and write to
individual blocks on the disk.

■ Bus I/O: UEFI abstracts direct access to the device on its native bus via the bus
I/O or pass-through protocols. The bus I/O protocols allow sending and receiving
data across an I/O bus such as USB, PCI, or serial. The pass-through protocols are
similar, allowing sending and receiving storage-bus specific packets directly to
storage devices (for example, SATA, IDE, SCSI). This frees up the application
from having to know the details of specific device registers or how the bus has
been configured.

■ Bus Host I/O: UEFI abstracts direct access to the device’s host controller beyond
sending and receiving data to devices that are on the bus. Many of the bus con-
trollers, such as PCI, USB, SCSI, and even (in the PI specifications) I2C and SPI
have direct host controller protocols that allow even greater access for testing.

Using the right level of abstraction means that tests for a specific class of devices can
be done without worrying about unnecessary details. This, in turn, means that the
test will be more portable from one generation of boxes to the next generation of
boxes. It also means it is more applicable, to other devices of the same type, but which
are located on another similar bus. For example, many tests for IDE also work for
SATA. Many tests for optical disks also work for SCSI.

Using the right abstraction level for access also means that the tests are less likely
to destabilize the box (or subsystem in that box) under test. Since the box (or subsys-
tem) is usually running many tests during the manufacturing process, it is important
for them to be run one after the other to save time. This can only be done if the box
(or subsystem, or device) is still in a working state after finishing the previous test.
The worst case is that there must be either a physical intervention (that is, cable in-
serted or removed) with the box, or the box must be reset. While these are sometimes
unavoidable, each one adds time to the manufacturing test. (Yes, ResetSystem()
is disruptive and adds time.)

 Converting Manufacturing Tools  

Using the right abstraction also allows third-party tests to be inserted into the
manufacturing process. For example, each component vendor can provide tests of the
condition of their individual component and even, in some cases, the UEFI-compati-
ble driver that supports it. Since they use standard APIs provided by UEFI, they can
be used over and over again, often with no more modification than changing a few
command-line arguments. In addition, while they test their component, additional
tests that use that component can be inserted in the same script.

Converting Manufacturing Tools

So, how do you convert tools to work in the UEFI Shell environment? Even though the
UEFI Shell has many advantages, there is still work required to make the leap from
the 16-bit, 1980’s MS-DOS environment tools.

The clock is ticking. Every month that you defer converting over to a more modern
tool environment simply makes the job harder. It is harder to find a system that can
host the operating system and compiler necessary to build the tools. It is harder to
find engineers in your company who still remember how the tools are supposed to
work. It is harder to find documentation that describes the process.

Here are some key steps:
■ UEFI. This may seem obvious, but converting the tools requires familiarity with

the basic concepts behind UEFI and the UEFI Shell. The UEFI specifications are
great reference material, but they aren’t constructed to teach UEFI and the UEFI
driver model. You are already taking a big step by reading this book. We would
also recommend the authors’ book Beyond BIOS: Developing with the Unified Ex-
tensible Firmware Interface.

■ UEFI Build Environment. Since UEFI Shell applications are a specialized type of
PE/COFF format executable, there are multiple build environments for creating
them, including open-source (EDK2, gnu-efi) and those provided by UEFI firm-
ware vendors. All of these build environments provide sample C applications that
can be used as a starting point. Most of them do not support standard C style
make files, so there will be a learning curve. See Chapter 10, “UEFI Shell Pro-
gramming,” for more information on the EDK2 build files.

■ Tool Status. Make sure that you have access to the tool’s source code and the nec-
essary tools to recreate the original too.

■ Review the code to see if the code flow is easy to understand.
■ Identify the areas in the code where there is direct hardware access.
■ Take note of direct calls to DOS and BIOS services (via INT 0x10 and INT 0x13) via

some sort of library wrapper.
■ Watch out for Software SMIs! Many older tools use an output to a hardware I/O

port (such as 0xb2). These indicate a dependency between the tool and the un-
derlying firmware code written in (System) Management Mode.

  Chapter 5: Manufacturing

■ Mark these to revisit later.
■ Key Engineers. Find the key engineers in your company who have knowledge

about these tools. Engineers are often, by nature, hoarders. Somewhere they may
have design documents, however incomplete or out of date. Spend some time
with them to understand the tools and then write down what you find out. This
will save time later, both for you and whoever has to do this job again later.

■ New Goals. Many times, once you decide to do the conversion, everyone presents
their wish lists. These are the things that others in your company wished they
could do, but didn’t because the cost and difficulty of updating the old manufac-
turing tools was too high. This may include new tests, new logging formats, new
manufacturing server infrastructure, or something else. So be prepared!

■ Clean Up. One of the goals may simply be to streamline the code.

Just one final note on converting manufacturing tools: accept the new interface!
Sometimes there is a temptation to create some sort of “interface layer” that makes
UEFI look like DOS or Linux or some other favorite environment. Resist the tempta-
tion. Don’t try to make UEFI look like Linux or DOS.

Conclusion

The UEFI Shell has a lot to offer during the manufacturing process:
■ Fast Boot
■ Small Siz.
■ Direct Hardware Access
■ Network Connectivity (Including Network Boot)
■ Support for the Latest Hardware
■ Optimized Scripting
■ Generation-to-Generation Stability

Now is the time to make the upgrade to UEFI Shell-based manufacturing tools.

DOI 10.1515/9781501505751-006

Chapter 6
Bare Metal Provisionig

Winning starts with beginning.
—Robert H. Schuller

One of the most apt uses for the UEFI Shell is in the bare metal provisioning of a sys-
tem. Recall from earlier chapters on the states of the machine that there is a point
where the system board has been manufactured, peripherals have been attached and
tested, but there is not necessarily an operating system.

The act of configuring the operating system or providing a new operating system
is called bare metal provisioning. We refer to this action as bare metal because the only
services exposed by the platform at this point are carried with the system board,
namely its UEFI firmware. This differs from OS-hosted provisioning wherein a fully
extant operating system with all of its capabilities is used to host the provisioning
session. In the bare-metal case, the system firmware provides the I/O and console
interfaces to the provisioning agent.

To illustrate the usage of the UEFI Shell for provisioning, a network-based de-
ployment scenario will be reviewed. During this scenario, the various facets of the
UEFI Shell and its utility will be demonstrated.

Provisioning with the UEFI Shell

In this scenario, we’ll return to our system platform, which we will refer to as the
“UEFI Client,” shown in Figure 6.1. It is a client only inasmuch as it will interact with
a provisioning server. The “client” could itself be a mobile device, Mobile Internet
Device (MID), desktop PC, or server. The client moniker only designates its role in the
networking scenario.

  Chapter 6: Bare Metal Provisioning

Figure 6.1: Client Platform

This client platform, depending upon its market segment, may or may not have a
local disk, video, keyboard, or mouse. But what any platform will have for this sce-
nario includes a central processing unit, chipset, memory, flash part with the UEFI
firmware, and most importantly, a network connection with an appropriate network
interface controller (NIC) and networking UEFI drivers.

UEFI Networking Stack

The UEFI drivers in this scenario include the UEFI2.2 networking stack. This network-
ing stack supports ARP, UDP, TCP, the PXE network-boot application, optional ISCSI,
and a variant for both IPv4 and IPv6, as shown in Figure 6.2.

 UEFI Networking Stack  

Figure 6.2: Networking Stack

The diagram in Figure 6.2, from the bottom up, shows the hardware elements of the
stack, such as the Universal Network Device Interface (UNDI), which abstracts the
NIC send and receive datagram capability. This raw UNDI interface is abstracted via
the Simple Network Protocol (SNP). The SNP, in turn, is abstracted by the Managed
Network Protocol (MNP). As opposed to the earlier EFI network technology wherein
only one application could open the SNP exclusively, the MNP allows for many con-
current listeners, thus allowing for several services to concurrently operate. What this
means is that an Extensible Authentication Protocol (EAP) handler looking for layer
2 messages can coexist with both the UEFI IP4 and UEFI IP6 stack applications such
as PXE boot and ISCSI.

The multiple-consumer nature of the MNP and the UEFI2.6 network stack is im-
portant because many of the network-based provisioning scenarios are “blended.”
The blending is born of the fact that the scenario may entail some network authen-
tication action as a preamble in order to allow the client onto the provisioning net-
work, then an ISCSI mount in order to have a file system, and finally, a PXE boot so
that an installer or test application can be downloaded. The latter UEFI application,
in turn, will access the file system on ISCSI while performing its own network-spe-
cific file operations.

  Chapter 6: Bare Metal Provisioning

Securing the Network

Because of the expanded natures of local area networks (LANs), wide-area networks
(WANs), and networks of networks, such as the Internet, providing secure interaction
among agents on the wire is imperative. One of these scenarios is shown in Figure 6.3,
which explains a network download and the salient trust elements.

Figure 6.3: PXE Boot

The notable aspect of this download is the initial EAP transaction. Historically, PXE
began with a DHCP discovery message in order to ascertain the location of the boot
server. But corporate IT departments have some concerns with this former model. IT
typically hosts the boot provisioning server, and the concept of a “bare-metal” ma-
chine joining their corporate network is a concern. With the advent of 802.1x-con-
trolled ports and EAP, however, the client machine can be configured in such a way
that it must satisfy a challenge-response prior to joining the network, as shown in
Figure 6.4. This entails the client responding to a set of EAP layer 2 messages from the
switch; the messages are in turn transmitted to the authentication server via the well-
known Radius protocol.

 Securing the Network  

Figure 6.4: 802.1x/EAP Challenge/Response

Once the client machine has been authenticated via the EAP challenge/response, it is
allowed onto the network. UEFI 2.2 supports both the 802.1x state machine in the
firmware and the ability to register a plurality of different EAP handlers. These han-
dlers can include pre-shared key (PSK) methods, such as CHAP, and can be extended
to more sophisticated single or mutual authentication methods based on asymmetric
cryptography like RSA, including but not limited to a Transport Layer Security (TLS)
handshake.

As needs arise, other network perimeter EAP methods can be included in the UEFI
clients, such as EAP Kerberos or the Trusted Computer Group’s EAP Trusted Network
Connect (TNC). The former is interesting as it will allow the UEFI Client to participate
into an extant enterprise network topology, and the latter is useful since the pre-OS
posture of the UEFI client, such as its code identity as described in the Trusted Plat-
form Module’s (TPM) Platform Configuration Registers (PCR), can be used to assess
the posture of the UEFI client prior to letting it on the network.

EAP is at layer 2, so it works on IPv4 or IPv6 networks. After gaining access to the
network, the UEFI client can attempt a DHCPv4 or DHCPv6-based network discover
request. The ability to do either or both is enabled via UEFI and its dual stack. With
the imminent exhaustion of the 32-bit Internet Protocol version 4 addresses, deploy-
ing UEFI 2.2 firmware with Internet Protocol version 6 support is key. IPv6 opens up
the address space to 128-bits. And as UEFI firmware proliferates to compute platforms
beyond PCs and servers (UEFI for appliances, non-standard platforms, and so on),
the ability to support IPv6 networking in the pre-OS is imperative.

  Chapter 6: Bare Metal Provisioning

After the UEFI PXE application has negotiated with the boot server for a server name
and IP address, it can commence the download of the boot image. In UEFI, the boot im-
age isn’t the small 16-bit file of some tens of kilobytes as in conventional BIOS, but is
instead a fully-qualified Portable Executable Common Object File Format (PE/COFF) im-
age. The UEFI executable is downloaded to the client machine for execution.

Now recall how we mentioned that IT may set up EAP for authenticating the client
so that a rogue UEFI machine may not wander onto IT networks. A similar concern
emerges with respect to the downloaded executable. The UEFI client wants to defend
itself from any random bits on the network, especially given the distributed nature of
today’s topologies, rogue wireless access points, and other venues for Man-in-the-
Middle (MITM) attacks on the wire to occur.

The credential listed in Figure 6.4 would be something like an x509v2 certificate
with a public verification key. The UEFI firmware uses the public key to verify the digital
signature of the boot image in order to ensure that it hasn’t been modified by an unau-
thorized party during transit. UEFI2.2 introduced the use of Authenticode image signing
so that the trust hierarchy can be flat or nested, allowing for various deployment op-
tions. In addition, the rich UEFI network stack allows for the firmware to check for cer-
tificate expiry for possible future revocation models (for example, if the private key as-
sociated with the public key in the certificate has been divulged).

A sample certificate is shown in Figure 6.5:

Figure 6.5: Example of an x509v2 Digital Certificate

 Securing the Network  

Important fields include name information, the expiry date, and the signature. The
signature in this example includes an SHA-1 digest of the data signed by a 2048-bit
RSA asymmetric key. This example also includes a 2-level deep hierarchy where the
authority in this case is Intel.

To bring all of these elements together, Figure 6.6 shows a flowchart of the end-
to-end process of booting. It includes the actions of both the boot server and client
machine.

Figure 6.6: Overall Boot Flow

  Chapter 6: Bare Metal Provisioning

Figure 6.6 shows the overall network boot process. The first portion is the use of the
Dynamic Host Configuration Protocol (DHCP) by the UEFI client in order to query the
network for both an IP address and the availability of a boot server. The DHCP offer
from the client and response from the server are important in that the client tells the
boot server the “type” of client, such as x64 UEFI. The server, in turn, responds if it
can support providing images to the machine.

One important image that can be downloaded to the platform is the UEFI Shell.
Given that there are a plurality of activities that need to occur during provisioning,
such as downloading additional files to image on the disk, activating certain devices
like TPMs, the shell can be used to orchestrate their invocation and pass results.

Speeding Up the Network

One of the advantages of performing network downloads is the introduction of the
File Transfer Protocol (FTP) into UEFI. One of the historical complaints about the net-
work boot experience is the use of PXE and UDP. The user datagram protocol (UDP),
upon which the trivial file transfer protocol (TFTP) is built, was originally chosen be-
cause of its simplicity, thus leading to smaller code implementations in the pre-OS.
But TFTP’s disadvantages include the fact that it is connectionless (because of UDP),
has small blocks, and requires several ACKs. This makes TFTP a very non-scalable
protocol. FTP, on the other hand, is built upon the Transmission Control Protocol
(TCP). TCP is a connection-oriented protocol that features much more robust down-
load capabilities.

Going forward with PXE, the DHCP handshake will be extended to allow for to-
day’s TFTP downloads, FTP, or even HTTP. The latter two can include the secure var-
iants of FTP-S and HTTP-S, if necessary. The Hyper Text Transfer Protocol (HTTP) will
offer the most flexible download going forward since it is routable across firewalls
and HTTP is already supported in web servers. Of course, the Internet today runs on
HTTP, so aligning the network boot paradigm with this technology ensures that the
platform investment will carry forward.

Example of Putting It Together

Below is an extract of a File Transfer Protocol (FTP) utility that is built upon the UEFI
TCP support to tie the notion of a connection-oriented protocol like FTP back to the
shell.

This program leverages the UEFI, which uses the UEFI Transmission Control Pro-
tocol (TCP) to download a file. TCP is a connection-oriented protocol with guaranteed
delivery with handshakes. This is in contrast to the Trivial File Transport Protocol

 Example of Putting It Together  

(TFTP), which is based upon Universal Datagram Protocol (UDP). UDP does not have
any delivery guarantees.

256 #include "miniftp.h"
257 #include "utility.h"
258 #include "script.h"
259 #include "Log.h"
260 #include "Cli.h"

Lines 256–260
The header files contain basic support routines for the FTP utility.

261 MINIFTP_UI Ui;
262 BOOLEAN ToExit = FALSE;
263 BOOLEAN IsConnected = FALSE;
264 BOOLEAN UseScript = FALSE;
265 BOOLEAN HasLogin = FALSE;
266 BOOLEAN NeedLog = FALSE;
267 BOOLEAN AppendLogFile = FALSE; // append log
268 file if log file is exit
269 EFI_HANDLE BackupImageHandle;
270 EFI_IP_ADDRESS FtpServerIp;
271
272 CHAR16 ScriptFileName[256];
273 CHAR16 LogFileName[256];

Lines 261–273
These lines declare global variables used by the FTP utility.

274
275 VOID
276 PrintUsage (
277 VOID
278);
279
280
281 EFI_STATUS
282 ParseArgs (
283 VOID
284);
285

Lines 275–285
These lines provide forward declaration of service routines.
286 EFI_STATUS
287 EFIAPI
288 InitializeMiniFtp (
289 IN EFI_HANDLE ImageHandle,
290 IN EFI_SYSTEM_TABLE *SystemTable
291);

  Chapter 6: Bare Metal Provisioning

292
293 EFI_GUID MiniFtpGuid = EFI_MINIFTP_GUID;
294
295 //
296 // Name:
297 // InitializeMiniFtp -- Entry point
298 // In:
299 // ImageHandle
300 // SystemTable
301 // Out:
302 // EFI_SUCCESS
303 //
304 EFI_BOOTSHELL_CODE(EFI_APPLICATION_ENTRY_POINT(Initialize
305 MiniFtp))
306 EFI_STATUS
307 EFIAPI
308 InitializeMiniFtp (
309 IN EFI_HANDLE ImageHandle,
310 IN EFI_SYSTEM_TABLE *SystemTable
311)
312 /*++
313 Routine Description:
314 Initial FTP shell application
315
316 Arguments:
317 ImageHandle -
318 SystemTable -
319 Returns:
320 --*/
321 {
322 EFI_STATUS Status;
323 CLI_COMMAND_CONTEXT Context;
324 //
325 // We are now being installed as an internal command
326 driver, initialize
327 // as an nshell app and run
328 //
329 EFI_SHELL_APP_INIT (ImageHandle, SystemTable);
330
331 BackupImageHandle = ImageHandle;
332
333 Status = ParseArgs ();
334 if (EFI_ERROR (Status)) {
335 PrintUsage ();
336 return Status;
337 }
338 Status = EfiMiniFtpLogInit (LogFileName);
339 if (EFI_ERROR (Status)) {
340 Print (L"Failed to initialize log file.\n\r");
341 goto done;
342 }
343 if (UseScript) {
344 Status = RunScript (ScriptFileName);

 Example of Putting It Together  

345 goto done;
346 }
347 //
348 // EnablePageBreak(1, TRUE);
349 //
350 // Main loop
351 //
352 StrCpy (Context.Prompt, DEFAULT_PROMPT);
353 do {
354 GetCommandLine (&Context);
355 ToExit = ProcessCommandLine (&Context);
356 ResetCliContext (&Context);
357 } while (!ToExit);
358 done:
359 EfiMiniFtpLogFinal ();
360
361 if (!UseScript) {
362 //
363 // Out->ClearScreen(Out);
364 //
365 Out->EnableCursor (Out, TRUE);
366 }
367
368 return Status;
369 }

Lines 286–369
These lines contain the code for the main body of the FTP application.

370
371 EFI_STATUS
372 ParseArgs (
373 VOID
374)
375 /*++
376 Routine Description: Parse the input parameter. Miniftp
377 support parameter as
378 follows:
379 Usage : Miniftp [-f <Script>] [-l
380 <LogFilename>] [-a]
381 <Script> : The name of script to run.
382 <LogFilename> : The name of log file. ('-a' will
383 be in effect if choose to write log file)
384 [-a]: append information in log file, if
385 the log file exists
386
387 Arguments:
388 Returns:
389 EFI_SUCCESS - success
390 EFI_INVALID_PARAMETER - parameter is error or not
391 supported in MiniFTP
392 --*/

  Chapter 6: Bare Metal Provisioning

393 {
394 EFI_STATUS Status;
395 UINTN Index;
396 CHAR16 *Char;
397 BOOLEAN ServerIpConfigured;
398 BOOLEAN IsIPv4;
399
400 ServerIpConfigured = FALSE;
401 Status = EFI_SUCCESS;
402
403 for (Index = 1; Index < SI->Argc; Index++) {
404 if (SI->Argv[Index][0] == '-') {
405 Char = SI->Argv[Index] + 1;
406 switch (*Char) {
407 case 'S':
408 case 's':
409 if ((Index == SI->Argc - 1) || (SI->Argv[Index +
410 1][0] == '-')) {
411 //
412 // No value after "-s", Error!
413 //
414 return EFI_INVALID_PARAMETER;
415 }
416
417 IsIPv4 = FALSE;
418 Status = StrToInetAddr (SI->Argv[Index + 1],
419 &FtpServerIp, &IsIPv4);
420 if (EFI_ERROR (Status)) {
421 goto Done;
422 }
423
424 ServerIpConfigured = TRUE;
425 break;
426
427 case 'f':
428 case 'F':
429 if (Index == SI->Argc - 1) {
430 return EFI_INVALID_PARAMETER;
431 }
432
433 UseScript = TRUE;
434 StrCpy (ScriptFileName, SI->Argv[Index + 1]);
435 break;
436
437 case 'l':
438 case 'L':
439 if (Index == SI->Argc - 1) {
440 return EFI_INVALID_PARAMETER;
441 }
442
443 NeedLog = TRUE;
444 StrCpy (LogFileName, SI->Argv[Index + 1]);
445 break;

 Example of Putting It Together  

446
447 case 'a':
448 case 'A':
449 if (NeedLog == TRUE) {
450 AppendLogFile = TRUE;
451 }
452 break;
453 default:
454 Status = EFI_INVALID_PARAMETER;
455 goto Done;
456 }
457 }
458 Done:
459 return Status;
460 }
461 }

Lines 371–461
These lines contain the argument parsing code.

462
463 VOID
464 PrintUsage (
465 VOID
466)
467 /*++
468
469 Routine Description:
470 --*/
471 {
472 Print (
473 L"MiniFtp Client 0.01\n\r"L"Copyright (C) Intel Corp
474 2009. All rights reserved.\n\r"L"\n\r" L"Usage :
475 Miniftp [-f <Script>] [-l <LogFilename>] [-a]\n\r"L"\n"
476 L" <Script> : The name of script to run.\n\r"L"
477 <LogFilename> : The name of log file to create.\n\r"
478 L" [-a] : Append Log file if log file is
479 exist.\n\r"
480);
481 }
482

Lines 463–482
These lines contain the help print routine.

The ability to create an FTP utility in UEFI is something that could not be done in
BIOS. For one thing, the BIOS networking stack only exposed UDP in the base code,
not a TCP interface. Also, BIOS does not have a consistent shell/command-line inter-
face built into the ROM in the same fashion as the ability to integrate the UEFI Shell.

  Chapter 6: Bare Metal Provisioning

In addition to the use of FTP, the UEFI Shell can integrate the FTP utility as a
built-in command, and the integrated FTP+UEFI Shell could be integrated into the
ROM, could be put on the UEFI System partition, or could be PXE-booted itself, in
order to allow for a rich set of scenarios.

Summary

This chapter has shown how emergent UEFI platform networking capabilities, com-
bined with the UEFI Shell, allow for rich provisioning scenarios. These scenarios al-
low for flexibility without compromising scale or security of the solution.

DOI 10.1515/9781501505751-007

Chapter 7
Configuration of Provisioned Material

Innovation distinguishes between a leader and a follower.
—Steve Jobs

Once material gets placed on a target system, one of the inevitable next steps would
be the configuration of this material. Since much of the inherent configuration mech-
anisms that are available in the UEFI firmware environment are also supported in the
UEFI Shell environment, this chapter’s material will touch on configuration capabil-
ities available in both environments.

The BIOS has never been known for having a great user interface. The ROM sizes
were too limited and the video interfaces too unpredictable to support high-end
graphical interfaces.

Much of the design that the UEFI configuration infrastructure covers has been
heavily studied and analyzed by modern operating systems. The results of these ef-
forts are what have turned into the configuration infrastructure that first was docu-
mented in the UEFI 2.1 specification.

Initialization Timeline

During platform initialization, several distinct steps occur. To simplify the timeline,
the illustration in Figure 7.1 simply covers four general phases of operation for the
system. These phases are intended to illustrate when configuration of the platform is
possible. Note that configuration services are available very early in platform initial-
ization.

Figure 7.1: The Platform Initialization Timeline

  Chapter 7: Configuration of Provisioned Material

Figure 7.1 gives a simplified view of the phase of operations for a platform:
■ Phase 1. During early initialization, the UEFI-compatible BIOS initializes some of

the underlying components of the platform (such as CPU, chipset, and memory).
This also includes establishing the UEFI infrastructure so that the common UEFI
components (such as the UEFI configuration infrastructure) are available to be
used by later phases of operation.

■ Phase 2. In the later phase, the BIOS starts to launch drivers (often located in add-
in device option ROMs) that have configuration-related material associated with
certain configurable devices. This configuration data is registered with the BIOS
through something known as the Human Interface Infrastructure (HII) services.
Between Phase 2 and 3 is usually when a local user would interact with the plat-
form to configure it (picture a user at a BIOS setup menu).

■ Phase 3. The BIOS initialization is complete and the BIOS proceeds to launch the
boot target (which is usually an operating system for most platforms).

■ Phase 4. The boot target is launched and running. For most platforms, this is the
phase that the machine remains in for most of the time.

It should also be noted that a very common scenario for platform configuration is
when a remote administrator interacts with a platform. This can be done with either
the assistance of an operating system, as illustrated in Figure 7.2, or with a platform
that contains an out-of-band management controller. Since the BIOS is often not in-
teractive while the operating system is running, this poses some issues for updating
BIOS-based configuration settings during the later phases of platform operation. Fig-
ure 7.2 shows a slightly modified example of the previous timeline, which now ena-
bles late configuration setting updates through a mechanism that applies the changes
across a system reset, leveraging the underlying UEFI configuration infrastructure.

Figure 7.2: Timeline Illustrating How Late Requests for BIOS Setting Changes Can Be Accommodated

 Configuration Infrastructure Overview  

■ Step 1. The UEFI-compliant BIOS initializes like it normally does.
■ Step 2. The configuration step is usually based on some previously chosen set-

tings that the user/administrator had previously applied to that device. These
settings are stored in some nonvolatile location. During this step, the settings are
typically read from the nonvolatile storage and the device is configured accord-
ingly.

■ Step 3. The platform is running the operating system in this illustration and has
some interaction with a remote administrator. The remote administrator requests
some BIOS setting changes to occur on the platform and some agent proxies this
request by a couple of methods:
– Capsules. The UEFI infrastructure supports an UpdateCapsule() ser-

vice, which allows for an OS-present agent to call into the BIOS and com-
municate some configuration request, which will typically be acted upon
across a platform reset. This is a very flexible method of enabling an across-
reset update since it can potentially allow for updates of both on-mother-
board devices as well as third-party devices (which often use their own pro-
prietary local nonvolatile storage). Platform behavior changes typically do
not occur until the platform has reset and the hardware has then been re-
configured based on the desired settings.

– EFI Variable. The UEFI infrastructure provides abstractions to a platform
nonvolatile storage service (that is, an EFI variable). This is primarily used
by the motherboard devices and the setting requests can be directly estab-
lished from the OS-present phase of operations. Platform behavior changes
typically do not occur until the platform has reset and the hardware has then
been reconfigured based on the desired settings.

■ Step 4. Once the remote configuration update request has been received and
acted upon, the platform typically resets so that the boot timeline is restarted. It
should be noted, though, that during this subsequent boot, the items that nor-
mally occur in Step 2 would still occur, but typically based on the aforementioned
configuration updates in the current configuration settings.

Configuration Infrastructure Overview

The modern UEFI configuration infrastructure that was first described in the UEFI 2.1
specification is known as the Human Interface Infrastructure (HII). HII includes the
following set of services:
■ Database Services. A series of UEFI protocols that are intended to be an in-

memory repository of specialized databases. These database services are focused
on differing types of information:

  Chapter 7: Configuration of Provisioned Material

– Database Repository. This is the interface that drivers interact with to ma-
nipulate configuration-related contents. It is most often used to register data
and update keyboard layout-related information.

– String Repository. This is the interface that drivers interact with to manipu-
late string-based data. It is most often used to extract strings associated with
a given token value.

– Font Repository. The interface to which drivers may contribute font-related
information for the system to use. Otherwise, it is primarily used by the un-
derlying firmware to extract the built-in fonts to render text to the local mon-
itor. Note that since not all platforms have inherent support for rendering
fonts locally (think headless platforms), general purpose UI designs should
not presume this capability.

– Image Repository. The interface to which drivers may contribute image-re-
lated information for the system to use. This is for purposes of referencing
graphical items as a component of a user interface. Note that since not all
platforms have inherent support for rendering images locally (think head-
less platforms), general purpose UI designs should not presume this capa-
bility.

■ Browser Services. The interface that is provided by the platform’s BIOS to interact
with the built-in browser. This service’s look and feel is implementation-specific,
which allows for platform differentiation.

■ Configuration Routing Services. The interface that manages the movement of con-
figuration data from drivers to target configuration applications. It then serves as
the single point to receive configuration information from configuration applica-
tions, routing the results to the appropriate drivers.

■ Configuration Access Services. The interface that is exposed by a driver’s configu-
ration handler and is called by the configuration routing services. This service
abstracts a driver’s configuration settings and also provides a means by which
the platform can call the driver to initiate driver-specific operations.

Using the Configuration Infrastructure

The overview introduced the components of the UEFI configuration infrastructure.
This section discusses with a bit more detail how one goes about using aspects of this
infrastructure. The following steps are initiated by a driver that is concerned with us-
ing the configuration infrastructure:
■ Initialize hardware. The primary job of a device driver is typically to initialize the

hardware that it owns. During this process of physically initializing the device,
the driver is also responsible for establishing the proper configuration state in-
formation for that device. These typically include doing the following:

 Driver Model Interactions  

– Installing required protocols. Protocols are interfaces that will be used to
communicate with the driver. One of the more pertinent protocols asso-
ciated with configuration would be the Configuration Access protocol.
This is used by the system BIOS and agents in the BIOS to interact with
the driver. This is also the mechanism by which a driver can provide an
abstraction to a proprietary nonvolatile storage that under normal cir-
cumstances would not be usable by anyone other than the driver itself.
This is how configuration data can be exposed for add-in devices and
others can send configuration update requests without needing direct
knowledge of that device.

– Creating an EFI device path on an EFI handle. A device path is a binary
description of the device and typically how it is attached to the system.
This provides a unique name for the managed device and will be used
by the system to refer to the device later.

■ Register Configuration Content. One of the latter parts of the driver initializa-
tion (once a device path has been established) is the registration of the con-
figuration data with the underlying UEFI-compatible BIOS. The configura-
tion data typically consists of sets of forms and strings that contain sufficient
information for the platform to render pages for a user to interact with. It
should also be noted that now that the configuration data is encapsulated in
a binary format, what was previously an opaque meaningless set of data is
now a well-known and exportable set of data that greatly expands the con-
figurability of the device by both local and remote agents as well as BIOS and
OS-present components.

■ Respond to Configuration Event. Once the initialization and registration func-
tions have completed, the driver could potentially remain dormant until
called upon. A driver would most often be called upon to act on a configura-
tion event. A configuration event is an event that occurs when a BIOS com-
ponent calls upon one of the interfaces that the driver exposed (such as the
Configuration Access protocol) and sends the driver a directive. These direc-
tives typically would be something akin to “give me your current settings”
or “adjust setting X’s value to a 5.”

Driver Model Interactions

The drivers that interact with the UEFI configuration infrastructure are often compli-
ant with the UEFI driver model, as the examples shown in Figure 7.3 and Figure 7.4.
Since driver model compliance is very common (and highly recommended) for device
drivers, several examples are shown below that describe in detail how such a driver
would most effectively leverage the configuration infrastructure.

  Chapter 7: Configuration of Provisioned Material

Figure 7.3: A Single Driver that Is Registering Its Configuration Data and Establishing Its Environment
in a Recommended Fashion

■ Step 1. During driver initialization, install services on the controller handle.
■ Step 2. During driver initialization, discover the managed device. Create a device

handle and then install various services on it.
■ Step 3. During driver initialization, configuration data for the device is registered

with the HII database (through the NewPackageList() API) using the de-
vice’s device handle. A unique HII handle is created during the registration event.

■ Step 4. During system operation, when a configuration event occurs, the system
addresses (through the Configuration Access protocol) the configuration services
associated with the device.

Figure 7.4: A Single Driver that Is Managing Multiple Devices, Registering Its Configuration Data,
and Establishing Its Environment in a Recommended Fashion

 Provisioning the Platform  

■ Step 1. During driver initialization, install services on the controller handle.
■ Step 2. During driver initialization, discover the managed device(s). Create device

handle(s) and then install various services on them.
■ Step 3. During driver initialization, configuration data for each device is regis-

tered with the HII database (through the NewPackageList() API) using each
device’s device handle. A unique HII handle is created during the registration
event.

■ Step 4. During system operation, when a configuration event occurs, the system
addresses (through the Configuration Access protocol) the configuration services
associated with the driver. In this example, the configuration services will be re-
quired to disambiguate references to each of its managed devices by the passed-
in HII handle.

Provisioning the Platform

Figure 7.5 is an illustration that builds on the previously introduced concepts and
shows how the remote interaction would introduce the concept of bare-metal provi-
sioning (putting content on a platform without the aid of a formal operating system).
This kind of interaction could be used in the manufacturing environment to achieve
the provisioning of the platform or in the after-market environment where one is re-
motely managing the platform and updating it.

Figure 7.5: Remote Interaction Occurs with a Target System; the System in Turn Accesses the Config-
uration Abstractions Associated with a Device or Set of Devices

  Chapter 7: Configuration of Provisioned Material

■ Step 1. Remote administrator sends a query to a target workstation. This query
could actually be a component of a broadcast by the administrator to all members
of the network.

■ Step 2. Request received and an agent (possibly a shell-based one) proxies the
request to the appropriate device.

■ Step 3. The agent responds based on interaction with the platform’s underlying
configuration infrastructure.

Configuring through the UEFI Shell

One of the usage models associated with the UEFI Shell is for the running of programs
or scripts within it so that it can automatically execute a variety of tasks and leverage
the power of the overall BIOS environment. Some of the built-in commands associ-
ated with certain support levels of the UEFI Shell provide both basic and advanced
features. These features expose the ability to configure the system as well as query
the system for some rather complicated sets of data through scripts. Having this ca-
pability in scripting certainly does not preclude the ability for anyone to leverage the
full extent of the UEFI BIOS’s capabilities through a binary program.

Basic Configuration

Some of the common commands that provide basic interaction with the configuration
infrastructure include:
■ drvcfg. This command invokes the platform’s configuration infrastructure. This

command is used primarily for the following purposes:
– To invoke the system’s browser through a script so that it displays a given

device’s setup pages.
– To provide the ability to set a specific set of default behaviors for a given

device.
– To set a device’s configuration from a user-defined group of settings con-

tained in a file.
■ drvdiag. This command invokes the Driver Diagnostics Protocol. This provides a

script the ability to interact with the diagnostics services that a driver may expose
in its list of services.

Command-line Usage for drvcfg
This section provides a set of examples of common usages for the drvcfg command,
followed by the appropriate command-line syntax. The full command-line syntax is
as follows:

 Configuring through the UEFI Shell  

drvcfg [-l XXX] [-c] [-f <Type>|-v|-s] [DriverHandle
[DeviceHandle [ChildHandle]]] [-i filename] [-o filename]

To display the list of devices that are available for configuration:
 Shell> drvcfg

To display the list of devices and child devices that are available for configuration:
 Shell> drvcfg –c

To force defaults on all devices:
 Shell> drvcfg –f 0

To force defaults on all devices that are managed by driver 0x17:
 Shell> drvcfg –f 0 17

To force defaults on device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –f 0 17 28

To force defaults on all child devices of device 0x28 that are managed by driver 0x17:
 Shell> drvcfg –f 0 17 28 –c

To force defaults on child device 0x30 of device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –f 0 17 28 30

To validate options on all devices:
 Shell> drvcfg –v

To validate options on all devices that are managed by driver 0x17:
 Shell> drvcfg –v 17

To validate options on device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –v 17 28

To validate options on all child devices of device 0x28 that are managed by driver 0x17:
 Shell> drvcfg –v 17 28 –c

To validate options on child device 0x30 of device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –v 17 28 30

To set options on device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –s 17 28

To set options on child device 0x30 of device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –s 17 28 30

To set options on device 0x28 that is managed by driver 0x17 in English:
 Shell> drvcfg –s 17 28 –l eng

  Chapter 7: Configuration of Provisioned Material

To set options on device 0x28 that is managed by driver 0x17 in Spanish:
 Shell> drvcfg –s 17 28 –l spa

Command-line Usage for drvdiag
This section provides a set of examples of common usages for the drvdiag command,
followed by the appropriate command-line syntax. The full command-line syntax is
as follows:
drvdiag [-c] [-l XXX] [-s|-e|-m] [DriverHandle
[DeviceHandle [ChildHandle]]]

To display the list of devices that are available for diagnostics:
 Shell> drvdiag

To display the list of devices and child devices that are available for diagnostics:
 Shell> drvdiag –c

To run diagnostics in standard mode on all devices:
 Shell> drvdiag –s

To run diagnostics in standard mode on all devices in English:
 Shell> drvdiag –s –l eng

To run diagnostics in standard mode on all devices in Spanish:
 Shell> drvdiag –s –l spa

To run diagnostics in standard mode on all devices and child devices:
 Shell> drvdiag –s –c

To run diagnostics in extended mode on all devices:
 Shell> drvdiag –e

To run diagnostics in manufacturing mode on all devices:
 Shell> drvdiag –m

To run diagnostics in standard mode on all devices managed by driver 0x17:
 Shell> drvdiag –s 17

To run diagnostics in standard mode on device 0x28 managed by driver 0x17:
 Shell> drvdiag –s 17 28

To run diagnostics in standard mode on all child devices of device 0x28 managed by
driver 0x17:
 Shell> drvdiag –s 17 28 –c

 Configuring through the UEFI Shell  

To run diagnostics in standard mode on child device 0x30 of device 0x28 managed
by driver 0x17:
 Shell> drvdiag –s 17 28 30

Advanced Configuration Abilities

Some of the common commands that provide basic interaction with the configuration
infrastructure include:

■ memmap. This command displays the memory map associated with the UEFI en-
vironment.

■ dblk. This command allows a script to interact with the underlying block (storage)
device so that it can display the contents of one or more of its blocks/sectors.

■ dmem. This command displays the contents of system memory or device memory.
If an address is not specified, then the contents of the EFI system table are dis-
played. Otherwise, memory starting at a particular address is displayed. This is
especially useful for displaying the contents of certain memory ranges like a de-
vice’s PCI configuration space.

■ mm. This command allows the user to display or modify the I/O register, memory
contents, or PCI configuration space.

Command-line Usage for memmap

This section provides an example of the memmap command. The full command-line
syntax is as follows:
memmap [-b] [-sfo]

fs0:\> memmap

Type Start End # Pages Attributes
available 0000000000750000-0000000001841FFF 00000000000010F2 0000000000000009
LoaderCode 0000000001842000-00000000018A3FFF 0000000000000062 0000000000000009
available 00000000018A4000-00000000018C1FFF 000000000000001E 0000000000000009
LoaderData 00000000018C2000-00000000018CAFFF 0000000000000009 0000000000000009
BS_code 00000000018CB000-0000000001905FFF 000000000000003B 0000000000000009
BS_data 0000000001906000-00000000019C9FFF 00000000000000C4 0000000000000009
...
RT_data 0000000001B2B000-0000000001B2BFFF 0000000000000001 8000000000000009
BS_data 0000000001B2C000-0000000001B4FFFF 0000000000000024 0000000000000009
reserved 0000000001B50000-0000000001D4FFFF 0000000000000200 0000000000000009

 reserved : 512 Pages (2,097,152)
 LoaderCode: 98 Pages (401,408)
 LoaderData: 32 Pages (131,072)
 BS_code : 335 Pages (1,372,160)
 BS_data : 267 Pages (1,093,632)
 RT_data : 19 Pages (77,824)
 available : 4,369 Pages (17,895,424)
Total Memory: 20 MB (20,971,520) Bytes

  Chapter 7: Configuration of Provisioned Material

Command-line Usage for dblk
This section provides a set of examples of common usages for the dblk command,
followed by the appropriate command-line syntax. The full command-line syntax is
as follows:
dblk device [lba] [blocks] [-b]

To display one block of blk0, beginning from block 0:
 Shell>dblk blk0

To display one block of fs0, beginning from block 0x2:
 Shell>dblk fs0 2

To display 0x5 blocks of fs0, beginning from block 0x12:
 Shell>dblk fs0 12 5

To display 0x10 blocks of fs0, beginning from block 0x12:
 Shell>dblk fs0 12 10

The attempt to display more than 0x10 blocks will display only 0x10 blocks:
 Shell>dblk fs0 12 20

To display one block of blk2, beginning from the first block (blk0):
 fs1:\tmps1> dblk blk2 0 1

 LBA 0000000000000000 Size 00000200 bytes BlkIo 3F0CEE78
 00000000: EB 3C 90 4D 53 44 4F 53-35 2E 30 00 02 04 08 00 *.<.MSDOS5.0.....*
 00000010: 02 00 02 00 00 F8 CC 00-3F 00 FF 00 3F 00 00 00 *........?...?...*
 00000020: 8E 2F 03 00 80 01 29 2C-09 1B D0 4E 4F 20 4E 41 *./....),...NO NA*
 00000030: 4D 45 20 20 20 20 46 41-54 31 36 20 20 20 33 C9 *ME FAT16 3.*
 00000040: 8E D1 BC F0 7B 8E D9 B8-00 20 8E C0 FC BD 00 7C *.........*
 00000050: 38 4E 24 7D 24 8B C1 99-E8 3C 01 72 1C 83 EB 3A *8N$.$....<.r...:*
 00000060: 66 A1 1C 7C 26 66 3B 07-26 8A 57 FC 75 06 80 CA *f...&f;.&.W.u...*
 00000070: 02 88 56 02 80 C3 10 73-EB 33 C9 8A 46 10 98 F7 *..V....s.3..F...*
 00000080: 66 16 03 46 1C 13 56 1E-03 46 0E 13 D1 8B 76 11 *f..F..V..F....v.*
 00000090: 60 89 46 FC 89 56 FE B8-20 00 F7 E6 8B 5E 0B 03 *`.F..V..^..*
 000000A0: C3 48 F7 F3 01 46 FC 11-4E FE 61 BF 00 00 E8 E6 *.H...F..N.a.....*
 000000B0: 00 72 39 26 38 2D 74 17-60 B1 0B BE A1 7D F3 A6 *.r9&8-t.`.......*
 000000C0: 61 74 32 4E 74 09 83 C7-20 3B FB 72 E6 EB DC A0 *at2Nt... ;.r....*
 000000D0: FB 7D B4 7D 8B F0 AC 98-40 74 0C 48 74 13 B4 0E *........@t.Ht...*
 000000E0: BB 07 00 CD 10 EB EF A0-FD 7D EB E6 A0 FC 7D EB *................*
 000000F0: E1 CD 16 CD 19 26 8B 55-1A 52 B0 01 BB 00 00 E8 *.....&.U.R......*
 00000100: 3B 00 72 E8 5B 8A 56 24-BE 0B 7C 8B FC C7 46 F0 *;.r.[.V$......F.*
 00000110: 3D 7D C7 46 F4 29 7D 8C-D9 89 4E F2 89 4E F6 C6 *=..F.)....N..N..*
 00000120: 06 96 7D CB EA 03 00 00-20 0F B6 C8 66 8B 46 F8 *........ ...f.F.*
 00000130: 66 03 46 1C 66 8B D0 66-C1 EA 10 EB 5E 0F B6 C8 *f.F.f..f....^...*
 00000140: 4A 4A 8A 46 0D 32 E4 F7-E2 03 46 FC 13 56 FE EB *JJ.F.2....F..V..*
 00000150: 4A 52 50 06 53 6A 01 6A-10 91 8B 46 18 96 92 33 *JRP.Sj.j...F...3*
 00000160: D2 F7 F6 91 F7 F6 42 87-CA F7 76 1A 8A F2 8A E8 *......B...v.....*
 00000170: C0 CC 02 0A CC B8 01 02-80 7E 02 0E 75 04 B4 42 *............u..B*
 00000180: 8B F4 8A 56 24 CD 13 61-61 72 0B 40 75 01 42 03 *...V$..aar.@u.B.*
 00000190: 5E 0B 49 75 06 F8 C3 41-BB 00 00 60 66 6A 00 EB *^.Iu...A...`fj..*
 000001A0: B0 4E 54 4C 44 52 20 20-20 20 20 20 0D 0A 52 65 *.NTLDR ..Re*
 000001B0: 6D 6F 76 65 20 64 69 73-6B 73 20 6F 72 20 6F 74 *move disks or ot*
 000001C0: 68 65 72 20 6D 65 64 69-61 2E FF 0D 0A 44 69 73 *her media....Dis*
 000001D0: 6B 20 65 72 72 6F 72 FF-0D 0A 50 72 65 73 73 20 *k error...Press *
 000001E0: 61 6E 79 20 6B 65 79 20-74 6F 20 72 65 73 74 61 *any key to resta*
 000001F0: 72 74 0D 0A 00 00 00 00-00 00 00 AC CB D8 55 AA *rt............U.*

 Configuring through the UEFI Shell  

Fat 16 BPB FatLabel: 'NO NAME ' SystemId: 'FAT16 ' OemId: 'MSDOS5.0'
 SectorSize 200 SectorsPerCluster 4 ReservedSectors 8 # Fats 2
 Root Entries 200 Media F8 Sectors 32F8E SectorsPerFat CC
 SectorsPerTrack 3F Heads 255

Command-line Usage for dmem
This section provides example usages of the dmem command. The full command-line
syntax is as follows:
dmem [-b] [address] [size] [-MMIO]

To display the EFI system table pointer entries:
 fs0:\> dmem

 Memory Address 000000003FF7D808 200 Bytes
 3FF7D808: 49 42 49 20 53 59 53 54-02 00 01 00 78 00 00 00 *IBI SYST....x...*
 3FF7D818: 5C 3E 6A FE 00 00 00 00-88 2E 1B 3F 00 00 00 00 *\>j........?....*
 3FF7D828: 26 00 0C 00 00 00 00 00-88 D3 1A 3F 00 00 00 00 *&..........?....*
 3FF7D838: A8 CE 1A 3F 00 00 00 00-88 F2 1A 3F 00 00 00 00 *...?.......?....*
 3FF7D848: 28 EE 1A 3F 00 00 00 00-08 DD 1A 3F 00 00 00 00 *(..?.......?....*
 3FF7D858: A8 EB 1A 3F 00 00 00 00-18 C3 3F 3F 00 00 00 00 *...?..........*
 3FF7D868: 00 4B 3F 3F 00 00 00 00-06 00 00 00 00 00 00 00 *.K............*
 3FF7D878: 08 DA F7 3F 00 00 00 00-70 74 61 6C 88 00 00 00 *...?....ptal....*
 3FF7D888: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D898: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8A8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8B8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8C8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8D8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8E8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8F8: 00 00 00 00 00 00 00 00-70 68 06 30 88 00 00 00 *........ph.0....*
 3FF7D908: 65 76 6E 74 00 00 00 00-02 02 00 60 00 00 00 00 *evnt.......`....*
 3FF7D918: 18 6F 1A 3F 00 00 00 00-10 E0 3F 3F 00 00 00 00 *.o.?..........*
 3FF7D928: 10 00 00 00 00 00 00 00-40 C0 12 3F 00 00 00 00 *........@..?....*
 3FF7D938: 10 80 13 3F 00 00 00 00-00 00 00 00 00 00 00 00 *...?............*
 3FF7D948: 00 00 00 00 00 00 00 00-40 7D 3F 3F 00 00 00 00 *........@.....*
 3FF7D958: 50 6F 1A 3F 00 00 00 00-00 00 00 00 00 00 00 00 *Po.?............*
 3FF7D968: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D978: 00 00 00 00 00 00 00 00-70 74 61 6C 88 00 00 00 *........ptal....*
 3FF7D988: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D998: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9A8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9B8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9C8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9D8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9E8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9F8: 00 00 00 00 00 00 00 00-70 68 06 30 A0 00 00 00 *........ph.0....*

 Valid EFI Header at Address 000000003FF7D808
 --
 System: Table Structure size 00000078 revision 00010002
 ConIn (3F1AD388) ConOut (3F1AF288) StdErr (3F1ADD08)
 Runtime Services 000000003F3FC318
 Boot Services 000000003F3F4B00
 SAL System Table 000000003FF22760
 ACPI Table 000000003FFD9FC0
 ACPI 2.0 Table 00000000000E2000
 MPS Table 000000003FFD0000
 SMBIOS Table 00000000000F0020

  Chapter 7: Configuration of Provisioned Material

To display memory contents from 1af3088 with size of 16 bytes:
 Shell> dmem 1af3088 16
 Memory Address 0000000001AF3088 16 Bytes
 01AF3088: 49 42 49 20 53 59 53 54-00 00 02 00 18 00 00 00 *IBI SYST........*
 01AF3098: FF 9E D7 9B 00 00 *......*

To display memory mapped I/O contents from 1af3088 with size of 16 bytes:
 Shell> dmem 1af3088 16 -MMIO

Command-line Usage for drvdiag
This section provides example usages of the drvdiag command. The full command-
line syntax is as follows:
mm address [value] [-w 1|2|4|8] [-MEM | -MMIO | -IO | -PCI | -PCIE]

To display or modify memory:
Address 0x1b07288, default width=1 byte:
fs0:\> mm 1b07288
MEM 0x0000000001B07288 : 0x6D >
MEM 0x0000000001B07289 : 0x6D >
MEM 0x0000000001B0728A : 0x61 > 80
MEM 0x0000000001B0728B : 0x70 > q

fs0:\> mm 1b07288
MEM 0x0000000001B07288 : 0x6D >
MEM 0x0000000001B07289 : 0x6D >
MEM 0x0000000001B0728A : 0x80 > *Modified
MEM 0x0000000001B0728B : 0x70 > q

To modify memory: Address 0x1b07288, width = 2 bytes:
Shell> mm 1b07288 -w 2
MEM 0x0000000001B07288 : 0x6D6D >
MEM 0x0000000001B0728A : 0x7061 > 55aa
MEM 0x0000000001B0728C : 0x358C > q

Shell> mm 1b07288 -w 2
MEM 0x0000000001B07288 : 0x6D6D >
MEM 0x0000000001B0728A : 0x55AA > *Modified
MEM 0x0000000001B0728C : 0x358C > q

To display I/O space: Address 80h, width = 4 bytes:
Shell> mm 80 -w 4 –IO
IO 0x0000000000000080 : 0x000000FE >
IO 0x0000000000000084 : 0x00FF5E6D > q

To modify I/O space using non-interactive mode:
Shell> mm 80 52 -w 1 -IO
Shell> mm 80 -w 1 -IO

 Configuring through the UEFI Shell  

IO 0x0000000000000080 : 0x52 > FE *Modified
IO 0x0000000000000081 : 0xFF >
IO 0x0000000000000082 : 0x00 >
IO 0x0000000000000083 : 0x00 >
IO 0x0000000000000084 : 0x6D >
IO 0x0000000000000085 : 0x5E >
IO 0x0000000000000086 : 0xFF >
IO 0x0000000000000087 : 0x00 > q

To display PCI configuration space, ss=00, bb=00, dd=00, ff=00, rr=00:
Shell> mm 0000000000 -PCI
PCI 0x0000000000000000 : 0x86 >
PCI 0x0000000000000001 : 0x80 >
PCI 0x0000000000000002 : 0x30 >
PCI 0x0000000000000003 : 0x11 >
PCI 0x0000000000000004 : 0x06 >
PCI 0x0000000000000005 : 0x00 > q

To display PCIE configuration space, ss=00, bb=06, dd=00, ff=00, rrr=000:
Shell> mm 00060000000 -PCIE
PCIE 0x0000000060000000 : 0xAB >
PCIE 0x0000000060000001 : 0x11 >
PCIE 0x0000000060000002 : 0x61 >
PCIE 0x0000000060000003 : 0x43 >
PCIE 0x0000000060000004 : 0x00 > q

DOI 10.1515/9781501505751-008

Chapter 8
The Use of UEFI for Diagnostics

To err is human, and to blame it on a computer is even more so.

—Robert Orben

This chapter describes some usages of the UEFI Shell for diagnostics. Although the
PC ecosystem has rich examples of robust platform software and hardware compo-
nents, occasionally things go awry. In those cases, the machine state needs to be di-
agnosed or assessed. To that end, the act of performing diagnostics is a key action for
platform deployment and lifecycle maintenance.

Today, disk operating systems such as MS-DOS or PC DOS are still used by many
platform manufacturers as a diagnostics environment because of the single-tasking
nature of DOS, the large library of extant DOS utilities, the fact that DOS layers di-
rectly on PC/AT BIOS as its I/O stack, and the lack of memory protection in DOS. For
the purposes of a modern OS, these features of DOS are difficult to use, but for diag-
nosing a machine or determining the root-cause of a failure, this close mapping to
the hardware and controlled environment is appreciated. But DOS has various
downsides for diagnostics on contemporary platform hardware, including a limited
memory map, 16-bit operating mode, and difficulties in getting modern software
ported to this environment.

This description of DOS is not intended to be pejorative. In fact, the existence of
DOS coupled with PC/AT BIOS has been a contributing factor to the PC ecosystem
success and customer-visible value of Moore’s Law and the associated platform.

The Beyond DOS aspect of the book title, though, describes how scenarios like
DOS diagnostics now have an opportunity to move to UEFI. Int21h in DOS maps the
appropriate UEFI service, for example. In addition, the full machine addressability of
UEFI, richness of the UEFI and shell specifications, the ability to in fact access UEFI
Platform Initialization (PI) interfaces if they’re available, and open software infra-
structure like the EFI Development Kits at www.tianocore.org, are key enabling ele-
ments of this migration.

Types of Diagnostics

In the context of a UEFI system, many actors can contribute to the diagnostics role.
We mentioned above the available, generic infrastructure that the UEFI Shell and
main specifications at www.uefi.org provide, but within those specifications are some
purpose-designed abstractions for diagnostics. One example would be the
EFI_DRIVER_DIAGNOSTICS_PROTOCOL. The intent of a protocol such as this, like
other UEFI interfaces, is to bind the API to the entity that can produce the domain-

  Chapter 8: The Use of UEFI for Diagnostics

specific behavior. What we mean by that is the UEFI driver that provides a capability,
such as block abstraction from a disk driver, can also provide a diagnostics interface
in cases of a failure of the underlying media or hardware.

So why is a device-specific abstraction valuable? This gives a platform manufac-
turer the opportunity to write a generic “disk diagnostics” capability into a shell ap-
plication that can access the plurality of disk block instances via each driver’s
EFI_DRIVER_DIAGNOSTICS_PROTOCOL. Without this per-driver API publication,
such a “disk diagnostics” utility would have to contain vendor-specific information
and code flows from the sundry disk controller vendors in the industry.

Regarding the usage of the EFI_DRIVER_DIAGNOSTICS protocol mentioned
above, the UEFI Shell specification codifies usage via the drvdiag command.

Another type of diagnostic can be one that accesses the platform resources, such
as the PCI bus. To that end, the UEFI Shell has the mm and pci commands to allow
peeking (reading) and poking (writing) memory-mapped I/O, direct I/O, PCI configu-
ration access, and PCI memory-mapped device access, respectively. Like other UEFI
Shell commands, these hardware accesses can be done in an interactive mode or via
scripting, with console and/or log file recording being possible, too.

The final discussion of a class of diagnostics entails the use of the UEFI Shell to
ascertain information from the System Management BIOS tables. This example pro-
vides working reference code and is intended to tie together some of the earlier dis-
cussions around available software frameworks, infrastructure in both the UEFI main
specification and UEFI Shell specifications, and a use-case that provides customer-
visible value from using this technology.

The System Management BIOS (SMBIOS) tables are a set of data structures in
memory that are referenced by the GUID in the UEFI system table, namely:
#define SMBIOS_TABLE_GUID \
{0xeb9d2d31,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

The location of the SMBIOS table relative to other UEFI objects is shown in Figure 8.1.
The important point to note is the location of the industry standard hand-off tables in
the lower left-hand side of the diagram.

 SMBIOS Table Organization  

Figure 8.1: System Diagram with UEFI

This chapter describes a scenario wherein the system is not operational and different
asset information is discovered using capabilities of the UEFI Shell. Before we describe
the tool to ascertain the SMBIOS data, a little background information will be provided.

SMBIOS Table Organization

The purpose of this utility (named SMBIOSVIEW) is to get data from SMBIOS tables
and translate the packed information into a human-readable form. As such, the
SMBIOS structure table organization is the first issue to design with respect to this
diagnostic UEFI Shell-based utility.

According to the SMBIOS specification, there are two access methods defined for
the SMBIOS structures. The first method, defined in v2.0 of the SMBIOS specification,
provides the SMBIOS structures through a plug-and-play function interface. A table-
based method, defined in v2.1 of the SMBIOS specification, provides the SMBIOS
structures as a packed list of data referenced by a table entry point.

A BIOS compliant with v2.1 of the SMBIOS specification can provide one or both
methods. A BIOS compliant with v2.2 and later of this specification must provide the

  Chapter 8: The Use of UEFI for Diagnostics

table-based method and can optionally provide the plug-and-play function interface.
EFI uses the second method.

In EFI, the SMBIOS core driver provides table-based information. SMBIOSVIEW
gets the information and translates it to users. The table includes a table header, a
structure table, and other data objects. See the SMBIOS specification at
http://www.dmtf.org/standards/smbios/ for more information on the table entries.

SMBIOS Structure Table Entry Point

The information of SMBIOS is organized as the SMBIOS structure, and the SMBIOS
structure is accessed by the means of the SMBIOS structure table Entry Point Structure
(EPS).

Table Organization Graph

The table organization graph shown in Figure 8.2 is used to make the SMBIOS table
more understandable. The SMBIOS table includes a table header and a structure table.

The table header contains the general information of the table and the necessary
information to access the structure table.

The structure table contains a series of structures. The type of the last structure is
127, which indicates End-of-table.
The EPS (Entry Point Structure) has information about the structure table:
■ Table-Address points to the structure table starting address.
■ Table-Length is the length of the structure table.
■ Num-of-Structures is the number of structures in the structure table.

The first structure begins with the Table-Address. The second structure begins with
the next byte at the end of the first one, and so on.

The type of the last structure is 127. The last structure is also indicated by the
Num-of-Structures in the EPS.

The structures between the first and last are of random type. In other words, the
structures are packed neither increasing type nor decreasing type, but random.

Each Structure has a common header. The header contains three fields:
■ Type – type of this structure, following data is organized according to this type
■ Length – number of bytes of format part, it does not include the text string length
■ Handle – uniquely identifies the structure in the structure table

The format part follows the header. Text strings follow the format part. In text string
parts, two bytes of 0x00 identify the end of structure. It also identifies the end of the
structure table header.

 Structure Standards  

Figure 8.2: SMBIOS Table Organization

Structure Standards

Each SMBIOS structure has a formatted section and an optional unformatted section.
The formatted section of each structure begins with a 4-byte header. Remaining data
in the formatted section is determined by the structure type, as is the overall length
of the formatted section.

  Chapter 8: The Use of UEFI for Diagnostics

Structure Evolution and Usage Guidelines

As the industry evolves, the structures defined in this specification will evolve. To
ensure that the evolution occurs in a nondestructive fashion, the following guidelines
must be followed:
1. If a new field is added to an existing structure, that field is added at the end of the

formatted area of that structure and the structure’s Length field is increased by
the new field’s size.

2. Any software that interprets a structure shall use the structure’s Length field to
determine the formatted area size for the structure rather than hard-coding or
deriving the Length from a structure field.

3. Each structure shall be terminated by a double-null (0x0000), either directly fol-
lowing the formatted area (if no strings are present) or directly following the last
string. This includes system- and OEM-specific structures and allows upper-level
software to easily traverse the structure table. See below for structure-termina-
tion examples.

4. The unformatted section of the structure is used for passing variable data such as
text strings, see 3.4.3 Text Strings of the SMBIOS specification for more infor-
mation.

5. When an enumerated field’s values are controlled by the DMTF, new values can
be used as soon as they are defined by the DMTF without requiring an update to
this specification.

6. Starting with v2.3, each SMBIOS structure type has a minimum length—enabling
the addition of new, but optional, fields to SMBIOS structures. In no case shall a
structure’s length result in a field being less than fully populated. For example,
a Voltage Probe structure with Length of 0x15 is invalid since the Nominal Value
field would not be fully specified.

7. Software that interprets a structure field must verify that the structure’s length is
sufficient to encompass the optional field; if the length is insufficient, the op-
tional field’s value is Unknown. For example, if a Voltage Probe structure has a
Length field of 0x14, the probe’s Nominal Value is Unknown. A Voltage Probe
structure with Length greater than 0x14 always includes a Nominal Value field.

Text Strings

Text strings associated with a given SMBIOS structure are returned in the dmiS-
trucBuffer, appended directly after the formatted portion of the structure. This
method of returning string information eliminates the need for application software
to deal with pointers embedded in the SMBIOS structure. Each string is terminated
with a null (0x00) UINT8 and the set of strings is terminated with an additional null
(0x00) UINT8. When the formatted portion of a SMBIOS structure references a string,

 Features  

it does so by specifying a nonzero string number within the structure’s string-set. For
example, if a string field contains 0x02, it references the second string following the
formatted portion of the SMBIOS structure. If a string field references no string, a null
(0) is placed in that string field. If the formatted portion of the structure contains
string-reference fields and all the string fields are set to 0 (no string references), the
formatted section of the structure is followed by two null (0x00) BYTES. See 3.4.1
Structure Evolution and Usage Guidelines on page 90 of the SMBIOS specification for
a string-containing example.
Note: Each text string is limited to 64 significant characters due to system
MIF limitations.

Required Structures and Data

Beginning with SMBIOS v2.3, compliant SMBIOS implementations include a base set
of required structures and data within those structures. These structures include the
BIOS information, system information, processor information, and several tables de-
scribing the system information.

Features

SMBIOSVIEW allows users to display SMBIOS structure information with different de-
tail options. Its main goal is to provide a user-friendly interface of the SMBIOS struc-
ture. SMBIOSVIEW allows users to:
■ Display structure table statistics information
■ Display structure information with different levels:

– SHOW_NONE – Don’t interpret just dump the structure
– SHOW_OUTLINE – Only display header information
– SHOW_NORMAL – Display header information and element value
– SHOW_DETAIL – Display header and element detail information (default)

■ Display all structures’ information of certain Type
– Display structures’ information of certain Handle
– Display structures’ information one by one or all at once
– Controls (such as change display option) in application
– Use a simple help guide (>SmbiosView -?).

  Chapter 8: The Use of UEFI for Diagnostics

User Interface Design

This section describes the details of the user interface (UI) to the SMBIOSVIEW shell
command.

Design Guide

1. Command -line arguments determine what action the SMBIOS View tool should
perform.

2. In SMBIOSVIEW, change the options to determine how to display the respective
SMBIOS table contents.

1. SmbiosView [-t type] | [-h handle] | [-s] | [-a]

-t - View structures of certain type

-h - View structure of certain handle

-s - View statistics of whole SMBIOS table

-a - View all structures one at a time

2. Internal commands:

:q - Quit SmbiosView

:0 - SmbiosView display NONE info

:1 - SmbiosView display OUTLINE info

:2 - SmbiosView display NORMAL info

:3 - SmbiosView display DETAIL info

/? - Show help

 Note: Internal commands provide optional controls to users and they are gotten from users’ input
after a prompt ‘$’. Users can also press Enter to skip internal commands. The following command
allows for describing the various portions of the SMBIOS table. The various actions that can occur
with respect to the table manipulation are encoded via various input command line parameters.
These options include a description of the options via ‘-?.’

 User Interface Design  

Usage

>SmbiosView -? - Show help page
>SmbiosView - Show structures as default
>SmbiosView -s - Show statistics information, as shown in Figure 8.3
>SmbiosView -t 8 - Show all structures of type=8, as shown in Figure 8.4
>SmbiosView -h 25 - Show structure of handle=0x25
>SmbiosView -a > 1.log - Show all structures and output to file of 1.log

Examples

fs0:\>SmbiosView -s

Figure 8.3: SmbiosView Statistics

  Chapter 8: The Use of UEFI for Diagnostics

fs0:\>SmbiosView -t 8

Figure 8.4: SmbiosView User Interface

Architecture Design

The SMBIOS utility components architecture is illustrated in Figure 8.5 (the arrows
indicate the calling of another module), and can be described as follows:
■ Init Module. Gets the SMBIOS table and initializes the environment of the SMBIOS

utility.
■ Dispatch Module. Gets and transacts the shell command parameters and user in-

put.
■ User Input. The user inputs the internal commands such as changing a display

option or quitting the program.
■ SMBIOS Info Access Module. Provides a set of APIs to access the SMBIOS table

or structures.
■ Element Info Interpret Module. Translates packed data to understandable text

according to specification.
■ Data Unpack Module. Translates packed data to understandable information.
■ Display Module. Displays information as required options.

 SMBIOS_STRUCTURE_TABLE  

Figure 8.5: Smbios Utility Components Architecture

Data Structure

There are four key data structures in the editor implementation, as listed in Table 8.1.

Table 8.1: Key Data Structures

Data Structure Name Header File Name

SMBIOS_STRUCTURE_TABLE LibSmbios.h
SMBIOS_HEADER LibSmbios.h
SMBIOS_STRUCTURE_POINTER LibSmbios.h
STRUCTURE_STATISTICS SmbiosView.h

SMBIOS_STRUCTURE_TABLE

The structure of the SMBIOS_STRUCTURE_TABLE is as follows:
#pragma pack(1)
typedef struct {
 UINT8 AnchorString[4];
 UINT8 EntryPointStructureChecksum;
 UINT8 EntryPointLength;
 UINT8 MajorVersion;

  Chapter 8: The Use of UEFI for Diagnostics

 UINT8 MinorVersion;
 UINT16 MaxStructureSize;
 UINT8 EntryPointRevision;
 UINT8 FormattedArea[5];
 UINT8 IntermediateAnchorString[5];
 UINT8 IntermediateChecksum;
 UINT16 TableLength;
 UINT32 TableAddress;
 UINT16 NumberOfSmbiosStructures;
 UINT8 SmbiosBcdRevision;
} SMBIOS_STRUCTURE_TABLE;
#pragma pack()

Descriptions
This structure is defined as the EPS (Entry Point Structure) of the SMBIOS table. Ac-
cess to SMBIOS table information is by this structure. For detailed information, refer
to Chapter 3.

 Note: Because SMBIOS table uses a byte alignment data structure, this structure is also using
#pragma pack(1) to configure structure data alignment of one byte. This is necessary because a gen-
eral C declaration would be naturally aligned, but the present utility needs to map the data structure
to an external specification.

Members
Table 8.2 lists the members of the SMBIOS_STRUCTURE_TABLE data structure.

These tables are going to be manipulated by the utility. The description below
explains the specific entries and their meanings.

 SMBIOS_STRUCTURE_TABLE  

Table 8.2: Members of SMBIOS_STRUCTURE_TABLE

SMBIOS_HEADER

The structure of SMBIOS_HEADER is as follows:
#pragma pack(1)
typedef struct {
 UINT8 Type;
 UINT8 Length;
 UINT16 Handle;
} SMBIOS_HEADER;
#pragma pack()

Member Description

AnchorString _SM_, specified as (F  D F)
EntryPointStructureChecksum Checksum of the Entry Point Structure (EPS)
EntryPointLength Length of the Entry Point Structure
MajorVersion Identifies the major version of SMBIOS specifica-

tion implemented in the table structures.
MinorVersion Identifies the minor version of SMBIOS specifica-

tion implemented in the table structures.
MaxStructureSize Size of the largest SMBIOS structure, in bytes, en-

compasses the structure’s formatted area and
text strings.

EntryPointRevision Identifies the EPS revision implemented in this
structure and identifies the formatting of offsets
Bh to Fh.

FormattedArea[5] The value present in the Entry Point Revision field
defines the interpretation to be placed upon
these  bytes.

IntermediateAnchorString[5] _DMI_, specified as five ASCII characters (F 
D  F).

IntermediateChecksum Checksum of Intermediate Entry Point Structure (IEPS)
TableLength Total length of SMBIOS Structure Table, pointed

to by the Structure Table Address, in bytes.
TableAddress Total length of SMBIOS Structure Table, pointed

to by the Structure Table Address, in bytes.
NumberOfSmbiosStructures Total number of structures present in the SMBIOS

Structure Table.
SmbiosBcdRevision Indicates compliance with a revision of SMBIOS

specification.

  Chapter 8: The Use of UEFI for Diagnostics

Members
Table 8.3 lists the members of SMBIOS_HEADER.

Table 8.3: Members of SMBIOS_HEADER

SMBIOS_STRUCTURE_POINTER

The structure of SMBIOS_STRUCTURE_POINTER is as follows:
typedef union {
 SMBIOS_HEADER *Hdr;
 SMBIOS_TYPE0 *Type0;
 SMBIOS_TYPE1 *Type1;
 SMBIOS_TYPE2 *Type2;
 SMBIOS_TYPE3 *Type3;
 SMBIOS_TYPE4 *Type4;
 SMBIOS_TYPE5 *Type5;
 SMBIOS_TYPE6 *Type6;
 SMBIOS_TYPE7 *Type7;
 SMBIOS_TYPE8 *Type8;
 SMBIOS_TYPE9 *Type9;
 SMBIOS_TYPE10 *Type10;
 SMBIOS_TYPE11 *Type11;
 SMBIOS_TYPE12 *Type12;
 SMBIOS_TYPE13 *Type13;
 SMBIOS_TYPE14 *Type14;
 SMBIOS_TYPE15 *Type15;
 SMBIOS_TYPE16 *Type16;
 SMBIOS_TYPE17 *Type17;
 SMBIOS_TYPE18 *Type18;
 SMBIOS_TYPE19 *Type19;
 SMBIOS_TYPE20 *Type20;
 SMBIOS_TYPE21 *Type21;
 SMBIOS_TYPE22 *Type22;
 SMBIOS_TYPE23 *Type23;
 SMBIOS_TYPE24 *Type24;
 SMBIOS_TYPE25 *Type25;
 SMBIOS_TYPE26 *Type26;
 SMBIOS_TYPE27 *Type27;
 SMBIOS_TYPE28 *Type28;
 SMBIOS_TYPE29 *Type29;
 SMBIOS_TYPE30 *Type30;

Member Description

Type Structure type
Length Format part length of structure
Handle Unique identifier of structure in structure table

 SMBIOS_STRUCTURE_TABLE  

 SMBIOS_TYPE31 *Type31;
 SMBIOS_TYPE32 *Type32;
 SMBIOS_TYPE33 *Type33;
 SMBIOS_TYPE34 *Type34;
 SMBIOS_TYPE35 *Type35;
 SMBIOS_TYPE36 *Type36;
 SMBIOS_TYPE37 *Type37;
 SMBIOS_TYPE38 *Type38;
 SMBIOS_TYPE39 *Type39;
 SMBIOS_TYPE126 *Type126;
 SMBIOS_TYPE127 *Type127;
UINT8 *Raw;
} SMBIOS_STRUCTURE_POINTER;

Descriptions
This structure is defined as a union. Each field in the union is a method of organizing
the data of the structure, such as structure header, a structure type, or simply a byte
raw array.

Members
Table 8.4 lists the members of SMBIOS_STRUCTURE_POINTER.

Table 8.4: Members of SMBIOS_STRUCTURE_POINTER

STRUCTURE_STATISTICS

The structure of STRUCTURE_STATISTICS is as follows:
typedef struct {
 UINT16 Index;
 UINT8 Type;
 UINT16 Handle;
 UINT16 Addr;
 UINT16 Len;
} STRUCTURE_STATISTICS;

Members Description

Hdr Points to Structure header, common part of all structure types
Type(n) Interprets the structure as certain structure type format
Raw Interprets the Structure as simple bytes packet

  Chapter 8: The Use of UEFI for Diagnostics

Members
Table 8.5 lists the members of STRUCTURE_STATISTICS.

Table 8.5: Members of STRUCTURE_STATISTICS

Source Code for the Utility

To bring the SMBIOS overview and design discussions together, the SMBIOS view
command is described next. Various portions of this UEFI Shell utility are presented
and decomposed in order to show how the theory of SMBIOS can be married to a par-
ticular UEFI practice.

1 #include "EfiShellLib.h"
2 #include "LIbSmbios.h"
3 #include "LibSmbiosView.h"
4 #include "smbiosview.h"
5 #include "smbios.h"
6

Lines 1–6
These lines contain the include files for the application.

7 STATIC UINT8 mInit = 0;
8 STATIC SMBIOS_STRUCTURE_TABLE *mSmbiosTable = NULL;
9 STATIC SMBIOS_STRUCTURE_POINTER m_SmbiosStruct;
10 STATIC SMBIOS_STRUCTURE_POINTER *mSmbiosStruct =
11 &m_SmbiosStruct;

Lines 7–11
These lines contain the module globals for the application.

12 EFI_STATUS
13 LibSmbiosInit (
14 VOID
15)
16 /*++

Member Description

Index Index in the SMBIOS structure table
Type Structure type identified in the structure header
Handle Structure handle unique to identified structure in the table
Addr Structure offset from structure table start address
Len Structure whole length including format part and text format

 Source Code for the Utility  

17 Routine Description:
18 Init the SMBIOS VIEW API's environment.
19 Arguments:
20 None
21 Returns:
22 EFI_SUCCESS - Successful to init the SMBIOS
23 VIEW Lib\
24 Others - Cannot get SMBIOS Table
25 --*/
26 {
27 EFI_STATUS Status;
28
29 //
30 // Init only once
31 //
32 if (mInit == 1) {
33 return EFI_SUCCESS;
34 }
35 //
36 // Get SMBIOS table from System Configure table
37 //
38 Status = LibGetSystemConfigurationTable
39 (&gEfiSmbiosTableGuid, &mSmbiosTable);
40
41 if (mSmbiosTable == NULL) {
42 PrintToken (STRING_TOKEN
43 (STR_SMBIOSVIEW_LIBSMBIOSVIEW_CANNOT_GET_TABLE),
44 HiiHandle);
45
46 return EFI_NOT_FOUND;
47 }
48
49 if (EFI_ERROR (Status)) {
50 PrintToken (STRING_TOKEN
51 (STR_SMBIOSVIEW_LIBSMBIOSVIEW_GET_TABLE_ERROR),
52 HiiHandle, Status);
53 return Status;
54 }
55 //
56 // Init SMBIOS structure table address
57 //
58 mSmbiosStruct->Raw = (UINT8 *) (UINTN) (mSmbiosTable-
59 >TableAddress);
60
61 mInit = 1;
62 return EFI_SUCCESS;
63 }
64

Lines 12–64
These lines contain an initialization routine for the application, including logic to dis-
cover the SMBIOS data in memory.

  Chapter 8: The Use of UEFI for Diagnostics

65 VOID
66 LibSmbiosGetEPS (
67 SMBIOS_STRUCTURE_TABLE **pEntryPointStructure
68)
69 {
70 //
71 // return SMBIOS Table address
72 //
73 *pEntryPointStructure = mSmbiosTable;
74 }

Lines 65–74
These lines contain code to discover the entry point structure.

75 VOID
76 LibSmbiosGetStructHead (
77 SMBIOS_STRUCTURE_POINTER *pHead
78)
79 {
80 //
81 // return SMBIOS structure table address
82 //
83 pHead = mSmbiosStruct;
84 }
85

Lines 75–85
These lines contain code to discover the head structure.

86 EFI_STATUS
87 LibGetSmbiosInfo (
88 OUT CHAR8 *dmiBIOSRevision,
89 OUT UINT16 *NumStructures,
90 OUT UINT16 *StructureSize,
91 OUT UINT32 *dmiStorageBase,
92 OUT UINT16 *dmiStorageSize
93)
94 /*++
95 Routine Description:
96 Get SMBIOS Information.
97
98 Arguments:
99 dmiBIOSRevision - Revision of the SMBIOS
100 Extensions.
101 NumStructures - Max. Number of Structures the
102 BIOS will return.
103 StructureSize - Size of largest SMBIOS Structure.
104 dmiStorageBase - 32-bit physical base address for
105 memory mapped SMBIOS data.
106 dmiStorageSize - Size of the memory-mapped SMBIOS
107 data.
108

 Source Code for the Utility  

109 Returns:
110 DMI_SUCCESS - successful.
111 DMI_FUNCTION_NOT_SUPPORTED - Does not support SMBIOS
112 calling interface capability.
113 --*/
114 {
115 //
116 // If no SMIBOS table, unsupported.
117 //
118 if (mSmbiosTable == NULL) {
119 return DMI_FUNCTION_NOT_SUPPORTED;
120 }
121
122 *dmiBIOSRevision = mSmbiosTable->SmbiosBcdRevision;
123 *NumStructures = mSmbiosTable
124 ->NumberOfSmbiosStructures;
125 *StructureSize = mSmbiosTable->MaxStructureSize;
126 *dmiStorageBase = mSmbiosTable->TableAddress;
127 *dmiStorageSize = mSmbiosTable->TableLength;
128
129 return DMI_SUCCESS;
130 }

Lines 86–130
These lines contain code to set various fields of the SMBIOS information.

131
132 EFI_STATUS
133 LibGetSmbiosStructure (
134 IN OUT UINT16 *Handle,
135 IN OUT UINT8 *Buffer,
136 OUT UINT16 *Length
137)
138 /*++
139 Routine Description:
140 Get SMBIOS structure given the Handle,copy data to
141 the Buffer, Handle is changed to the next handle or
142 0xFFFF when the end is reached or the handle is not
143 found.
144
145 Arguments:
146 Handle: - 0xFFFF: get the first structure
147 - Others: get a structure according to this
148 value.
149 Buffter: - The pointer to the caller's memory
150 buffer.
151 Length: - Length of return buffer in bytes.
152 Returns:
153 DMI_SUCCESS - Buffer contains the required
154 structure data
155 - Handle is updated with next structure
156 handle or
157 0xFFFF(end-of-list).

  Chapter 8: The Use of UEFI for Diagnostics

158
159 DMI_INVALID_HANDLE - Buffer not contain the
160 requiring structure data
161 --*/
162 {
163 SMBIOS_STRUCTURE_POINTER Smbios;
164 SMBIOS_STRUCTURE_POINTER SmbiosEnd;
165 UINT8 *Raw;
166
167 if (*Handle == INVALIDE_HANDLE) {
168 *Handle = mSmbiosStruct->Hdr->Handle;
169 return DMI_INVALID_HANDLE;
170 }
171
172 if (Buffer == NULL) {
173 PrintToken (STRING_TOKEN
174 (STR_SMBIOSVIEW_LIBSMBIOSVIEW_NO_BUFF_SPEC), HiiHandle);
175 return DMI_INVALID_HANDLE;
176 }
177 *Length = 0;
178 Smbios.Hdr = mSmbiosStruct->Hdr;
179 SmbiosEnd.Raw = Smbios.Raw + mSmbiosTable->TableLength;
180 while (Smbios.Raw < SmbiosEnd.Raw) {
181 if (Smbios.Hdr->Handle == *Handle) {
182 Raw = Smbios.Raw;
183 //
184 // Walk to next structure
185 //
186 LibGetSmbiosString (&Smbios, (UINT16) (-1));
187
188 //
189 // Length = Next structure head - this structure
190 // head
191 //
192 *Length = (UINT16) (Smbios.Raw - Raw);
193 CopyMem (Buffer, Raw, *Length);
194 //
195 // update with the next structure handle.
196 //
197 if (Smbios.Raw < SmbiosEnd.Raw) {
198 *Handle = Smbios.Hdr->Handle;
199 } else {
200 *Handle = INVALIDE_HANDLE;
201 }
202 return DMI_SUCCESS;
203 }
204 //
205 // Walk to next structure
206 //
207 LibGetSmbiosString (&Smbios, (UINT16) (-1));
208 }
209
210 *Handle = INVALIDE_HANDLE;

 Summary  

211 return DMI_INVALID_HANDLE;
212 }

Lines 131–212
These lines contain code to discover specific SMBIOS structures.

Summary

This chapter has described how the UEFI Shell can be used for an important action in
the platform development and deployment space, namely diagnostics. The
discussion has included a discussion of using the UEFI Shell for SMBIOS. Specifically,
an extant industry standard, such as SMBIOS, can be comprehended by UEFI and
then assessed/managed via a UEFI Shell application. Again, this is just one instance
where the UEFI Shell, with its rich application library, can assist in real-world
platform deployment and management activities.

DOI 10.1515/9781501505751-009

Chapter 9
UEFI Shell Scripting

I honestly have no strategy whatsoever. I'm waiting for that script to pop through the letterbox
and completely surprise me.

—Ben Kingsley

UEFI Shell scripts are interpreted programs (usually with the extension .nsh) written
in a text-based language supported directly by the UEFI Shell. Similar to many shell
scripts (most notably the Windows command prompt), it also includes features
unique to the pre-OS environment, such as standardized command output and redi-
rection to and from environment variables.

The UEFI Shell searches for shell scripts first in the current directory and then in
the directories specified by the path environment variable. Shell scripts are carriage-
return delimited lists of shell commands that are executed (by default) from first to
last. Shell scripts also support several additional commands that change the flow of
control in a script or control the output:
■ echo – Outputs text to the standard output device
■ exit – Terminates the currently executing script
■ for…endfor – Repeatedly executes a block of script commands
■ goto – Continues execution with the specified label
■ if…else…endif – Conditionally executes a block of script commands
■ shift – Shifts positional command-line parameters

These are described in detail in Appendix B.
Using shell scripts, complex tasks can be performed simply. The following sec-

tions take on successively more difficult tasks using scripts and explain how they
work, line by line:
■ HelloWorld.nsh – The simplest script outputs “Hello, World” to the screen
■ Echo1.nsh – Echoes 3 shell parameters to the screen
■ Echo2.nsh – Echoes all shell parameters to the screen
■ Echo3.nsh – Echoes all shell parameters to the screen with a count
■ Concat1.nsh – Creates a new text file by joining together the contents of one

or more user-specified text files
■ Lsgrep.nsh – Asks the user for which file information (from the ls command)

to output and then outputs just that information to the screen
■ InstallCmd.nsh – Example script file that installs a new shell command and

updates all of the necessary environment variables

After these examples, we will demonstrate how to create a UEFI boot option that in-
vokes a shell script.

  Chapter 9: UEFI Shell Scripting

Hello, World!

The simplest script is shown in Figure 9.1.

1 @echo “Hello, World!”

Figure 9.1: HelloWorld.nsh

Line 1
The echo command copies the remainder of the line to standard output. The “@” pre-
vents the script line itself from being displayed.

If you run this script, you will see:
Shell> HelloWorld
Hello, World!

Echo

This script simply echoes the first three arguments to the screen, as shown in Fig-
ure 9.2.

1 @echo First : %1
2 @echo Second: %2
3 @echo Third : %3

Figure 9.2: Echo1.nsh

Lines 1–3
This will print out the first three command-line parameters. The first command-line
parameter is %1, the second is %2, all the way up to (theoretically) %9. What happens
if there are more than 9? Well, that is the subject of our next script.

If you run this script using abra, cadab, and ra as your parameters, you will see:
Shell> Echo1 abra cadab ra
First : abra
Second: cadab
Third : ra

Normally, any whitespace character will separate one command-line parameter from
the next. However, quotation marks can be used to break the rules. For example:

 Echo All Parameters  

Shell> Echo1 "abra cadab" ra1 ra2
First : "abra cadab"
Second: ra1
Third : ra2

The quotation marks caused the space between abra cadab to be ignored. Also, the
quotation marks were retained, rather than being discarded. Now try:
Shell> Echo1 ^"abra cadab^" ra
First : "abra
Second: cadab"
Third : ra

The “^” caret character forces the next character to be treated as a normal character.

Echo All Parameters

This script, shown in Figure 9.3, echoes all of the command-line parameters, no mat-
ter how many there are.

1 @echo -off
2 :start
3 if %1 == "" then
4 goto Done
5 endif
6 echo Parameter: %1
7 shift
8 goto start
9 :Done

Figure 9.3: Echo2.nsh

Line 2
The word start is a label that can be referenced later in a goto command.

Line 3
Check to see whether or not the command-line parameter is empty. The only way a
command-line parameter can be empty is if it is not present. So this is really a check
to see whether there are any more command-line parameters. If it is the last parame-
ter, then execution starts after the endif.

Line 6
If the parameter was present (see line 1), then display it.

  Chapter 9: UEFI Shell Scripting

Line 7
The shift command moves all of the command-line parameters over by one. So, %2
is moved to %1, %3 to %2, and so on. If the command line contains more than 9 pa-
rameters, the tenth will go to %9.

Line 8
The goto command causes execution to continue with the label specified after the
command. In this case, execution continues after line 1.

If you execute this command, you might see:
Shell> Echo2
Shell> Echo2 abc
Parameter: abc
Shell> Echo2 1 2 3 4 5 6 7 8 9 20
Parameter: 1
Parameter: 2
Parameter: 3
Parameter: 4
Parameter: 5
Parameter: 6
Parameter: 7
Parameter: 8
Parameter: 9
Parameter: 20

Echo All Parameters (Improved Version)

The script shown in Figure 9.4 is an enhanced version of the previous script. Instead
of just printing the static text “Parameter” before the text of each parameter, it actu-
ally prints “Parameter 1,” “Parameter 2,” and so on. Most of it is identical to the pre-
vious version, but it takes advantage of the for…endfor command’s ability to iter-
ate through a series of integers.

1 #
2 # echo3.nsh
3 #
4
5 @echo -off
6 for %a run (1 100)
7 if "%1" == "" then
8 exit /b
9 endif
10 @echo Parameter %a: %1
11 shift
12 endfor

Figure 9.4: Echo3.nsh

 Echo All Parameters (Improved Version)  

Line 6
The for…endfor script command repeatedly executes a block of script commands
until the list of possible index values has been exhausted. The block of script com-
mands on lines 6–10 would execute 100 times.

Acting as an index variable, %a will be updated each time through the loop.
There are 26 possible index variable names (a through z).

The keyword run indicates that the index variable will be initialized with the
first value (1) during the first time through the loop and that it will be incremented
by 1 each time through the loop. The loop will terminate when the index variable’s
value exceeds the second value (100). An optional third value indicates the amount
to increment or decrement the index variable. If it is not present, then it is assumed
to be 1 if the initial value is less than the ending value or -1 if the initial value is greater
than the ending value.

Instead of run, the keyword in can be used to step through a list of space-delim-
ited strings. This is demonstrated in the next example.

Line 7
This line checks to see if the next command-line parameter is blank. The command-
line parameter can only be blank if there are no more command-line parameters pre-
sent.

Line 8
The exit command, when used with the /b parameter, terminates the processing of
the current script. The exit code may also be specified, but, if not present, 0 is as-
sumed.

Line 10
As in the previous example, the parameter is output. But, in this example, %a is
added. When the script is executed, the %a will be replaced with the actual contents
of the index variable created in line 5.

If you execute this command, you might see:
Shell> Echo3
Shell> Echo3 abc
Parameter 1: abc
Shell> Echo3 1 2 3 4 5 6 7 8 9 20
Parameter 1: 1
Parameter 2: 2
Parameter 3: 3
Parameter 4: 4
Parameter 5: 5
Parameter 6: 6
Parameter 7: 7
Parameter 8: 8

  Chapter 9: UEFI Shell Scripting

Parameter 9: 9
Parameter 10: 20

Concatenate Text Files

This script, shown in Figure 9.5 creates a new text file that consists of the contents of
zero or more other text files. The syntax is:
concat1 output-file [input-file1...]

Just to make things interesting, we will allow any of the input files to contain wildcard
characters.

1 #
2 # concat1.nsh
3 #
4
5 @echo -off
6 if %1 == "" then
7 @echo Error: missing output file name
8 @exit /b 1
9 endif
10
11 set -v outputfile %1
12
13 :nextparm
14 if not %2 == "" then
15 for %a in %2
16 type %a >> %outputfile%
17 endfor
18 shift
19 goto nextparm
20 endif

Figure 9.5: Echo3.nsh

Lines 6–9
Check to see whether the output file name is specified. If not, an error message is
generated and the script exits with the return code of “1”. If the /b were not specified,
then the entire instance of the shell would be exited.

 List Only Selected “ls” Information  

Line 11
Saves the output file name to a volatile environment variable. The name needs to be
saved because, after the shift statement on line 18, it would be lost. If the –v were
missing, the value of ‘outputfile’ would be saved across system reset or system power-
cycle.

Lines 13–14, 19
The label ‘nextparm’, along with the if and the goto create a loop that exits only
when there are no more command-line parameters after the first.

Lines 15–17
The for…endfor commands create a loop, with one iteration for each file name that
matches the pattern specified by %2. Inside the loop, %a is initialized with the actual
file name. The type command outputs the contents to standard output. The >> re-
directs standard output so that it is appended to the specified file “outputfile.”

Line 18
This moves all the command-line parameters by one so that %2 becomes the next in-
put file name (if any).

List Only Selected “ls” Information

This script, shown in Figure 9.6, accepts the same syntax as “ls,” but it prompts the
user to specify information about the files to display. Using echo and the getkey
command from the previous chapter, it asks the user to select one of seven pieces of
information about the file:
1. Full Name
2. Logical Size
3. Physical Size
4. Attributes
5. File Access Date
6. File Creation Date
7. File Modification Date

Then it pipes the standard-format output of the ls command to the parse command
to extract the desired field. Many of the UEFI Shell commands have a special mode (-
sfo) where the output is formatted in a well-defined, easy to parse format. Except for
this special mode, the output of UEFI Shell commands is not standardized.

Standard format output consists of rows of information, with each row taking up
one line. Each row is divided into columns by a comma. The first column contains an

  Chapter 9: UEFI Shell Scripting

identifier that describes the type of information that appears in the other columns. All
columns except the first are quoted.

The ls command produces three different row types: ShellCommand,
VolumeInfo, and FileInfo. The ShellCommand row type must be the first row produced
by any shell command that produces standard-format output. The VolumeInfo row
type describes such information as the volume name and how much free space is
available. The FileInfo row type describes an individual file, with each column giving
the information listed above.

The parse command can go through a file and extract any single column from
standard-format output from a specified row type and display it.

1 #
2 # lsgrep.nsh
3 #
4
5 @echo 1) Full Name
6 @echo 2) Logical Size
7 @echo 3) Physical Size
8 @echo 4) Attributes
9 @echo 5) File Access Date
10 @echo 6) File Creation Date
11 @echo 7) File Modification Date
12 @echo
13 :wait
14 getkey "Select The File Data To Display: " _key
15
16 if %_key% lt 1 or %_key% gt 7 then
17 @echo %_key% is not between 1 and 7
18 goto wait
19 endif
20
21 math %_key% + 1 >v _key
22 @ls "%1" -sfo | parse FileInfo %_key%

Figure 9.6: Lsgrep.nsh

Lines 5–14
Display all of the possible fields on the screen for the user to select from and then wait
for a key. The resulting key press is stored in the environment variable _key.

Lines 16–19
Check to see whether the user input is valid. If not, display an error message and go
back to wait again for a key.

 Install Script  

Line 21
Add one to the value entered by the user. The standard-format output for the ls com-
mand puts the full name in column 2, the logical size in column 3, and so on. The
resulting value goes into the _key environment variable again.

Line 22
List all of the files, using the same command-line options passed to the script itself.
Up to 9 command-line options can be passed without doing some additional work.
Even if 9 weren’t specified, the remaining options will be blanks. The output is redi-
rected to a text file.

The parse command searches through the specified file for lines that begin with the
tag “FileInfo,” extracts the column number specified by %_key%, and displays it.

Install Script

The script shown in Figure 9.7 acts as an installation script for the GetKey sample
application from the previous chapter. It demonstrates how to:
1. Detect whether or not the UEFI Shell supports the features that are required to

support the GetKey sample application.
2. Detect errors during installation and display error messages.
3. Install the executable and help files to the correct directory.
4. Update the path to point to the target directory.
5. Create a new UEFI Shell profile called “_shellbook”

The script has the following syntax:
InstallCmd command-name target-directory

where command-name is the name of the shell command (such as GetKey) and
target-directory is the directory where the command should be installed.

1 #
2 # InstallCmd.nsh – Install a new UEFI Shell Command
3 #
4 # InstallCmd command-name target-directory
5 #
6 #
7 #
8 # Validate the UEFI Shell support level
9 #
10
11 if %shellsupport% ult 3 then
12 exit /b 2
13 endif
14
15 #

  Chapter 9: UEFI Shell Scripting

16 # Make sure that the command isn't already installed.
17 #
18
19 if exists(%2/%1.efi) then
20 @echo %1.efi already exists at %2.
21 exit /b 1
22 endif
23
24 if available(%1.efi) then
25 @echo %1.efi already exists in the path.
26 exit /b 1
27 endif
28
29 #
30 # Create the target directory
31 #
32
33 md %2
34 if not exists(%2) then
35 @echo Could not create target directory %2
36 exit /b 1
37 endif
38
39 #
40 # Copy the executable and help file to the target directory
41 #
42
43 cp –q %1.efi %2
44 if not %lasterror == 0 then
45 @echo Could not copy %1.efi to the target directory.
46 exit /b 1
47 endif
48
49 cp –q %1.man %2
50 if not %lasterror == 0 then
51 @echo Could not copy %1.man to the target directory.
52 del %2/%1.efi
53 exit /b 1
54 endif
55
56 #
57 # Create the profile _shellbook, if it doesn't exist
58 #
59
60 if not profile(_shellbook) then
61 set profiles %profiles";_shellbook
62 endif
63
64 #
65 # If necessary, add the target directory to the path
66 #
67
68 if not available(%1.efi)
69 set path %path%;%2
70 endif

Figure 9.7: InstallCmd.nsh

 Install Script  

Lines 11–13
These lines check the %shellsupport% environment variable to determine which
UEIF Shell features are present. If the support level is too low, then the script exits
with error code 2. No error message is displayed, since shell support levels less than
3 have no standard output support.

The UEFI Shell is very configurable and many of the features, APIs, and shell
commands described in the UEFI Shell specification may or may not be present. How-
ever, the various standard support levels can be detected by a UEFI Shell script by
examining shellsupport. The various valid values are described in Chapter 3 of
the UEFI Shell specification. They are briefly summarized in Table 9.1.

Table 9.1: UEFI Shell Support Levels

Level Name Execute()/
Scripting/
startup.nsh

Interac-
tive?

Commands

 Minimal No No None
 Scripting Yes No for, endfor, goto, if, else, endif, shift,

exit
 Basic Yes No attrib, cd, cp, date*1, time*, del, load,

ls, map, mkdir, mv, rm, reset, set, time-
zone*

 Interactive Yes Yes alias, date, echo, help, pause, time,
touch, type, ver, cls, timezone

Level 0 (Minimal) isn’t very interesting in the context of this chapter, since even
scripting is not supported. Level 1 (Scripting) adds the basic scripting support de-
scribed in this chapter, except for echo. Level 2 (Basic) adds basic file handling,
date/time, and environment variable commands, which do not rely on standard input
or standard output. Level 3 (Interactive) adds those commands that rely on standard
input and/or standard output.

Lines 19–22
This section checks to see whether or not the specified shell command already exists
in the target directory. The exists operator returns nonzero if the specified file does
not exist in the specified directory (or in the current working directory, if no directory


* Some commands are listed for both support level 2 and 3, but the level 3 version adds output. For
example, the date and time commands add the ability to show the current date and time.

  Chapter 9: UEFI Shell Scripting

is specified). If the file already exists, then the script exits with an error message and
an error code of 1.

Lines 24–27
This section checks to see whether the specified shell command already exists in the
current path. If the current shell command was installed and there was already a shell
command in the path, it is confusing to the user, since they aren’t sure which would
be executed. The available operator returns nonzero if the specified file does not
exist in the current directory or in any directory listed in the path environment vari-
able. If the file already exists, then the script exits with an error message and an error
code of 1.

Lines 33–37
This section creates the target directory using the md (a built-in alias of mkdir) com-
mand. The cp command used in later sections of this script will fail if the target di-
rectory does not already exist, so it must be created first. The script does not check
the error code to see whether there has been an error, but rather checks to see if the
directory exists after trying to create it. Directories can be checked in the same way as
files, using the exists operator.

Lines 43–47
This section copies the executable from the current directory to the target directory.
It then checks to see whether there has been an error by examining the %lasterror%
environment variable. Any nonzero value indicates one of the errors listed in Appen-
dix C of the UEFI Shell Specification. If there has been an error, a message is displayed
and the script is terminated with an error code.

Lines 49–54
This section copies the help file from the current directory to the target directory. The
UEFI Shell automatically searches for help files in the same directory as the executa-
ble. If an error has occurred when copying, an error message is displayed and the
script is terminated with an error code.

Lines 60–62
This section installs our custom UEFI Shell profile, with the name “_shellbook”. UEFI
Shell profiles are collections of related UEFI Shell applications. Each UEFI Shell pro-
file has a unique name. Standard profiles are described in Chapter 5 of the UEFI Shell
Specification. Custom profile names must begin with an underscore (“_”) character.

The list of currently installed shell profiles is stored in the nonvolatile environ-
ment variable with the name profiles, separated by a semicolon (“;”) character. A
profile name should not be added to profiles unless all of the commands are pre-
sent, since other scripts may rely on the information.

 How to Make a Shell Script Appear as a Boot Option  

The profiles operator is a Boolean operator that can be used to detect whether
a specific profile is installed in the UEFI Shell. This section first checks to see whether
the _shellbook profile exists and then, if not, adds it to the profiles environ-
ment variable using the set shell command.

The example given here assumes there is only one shell command in the profile.
If there were more than one shell command in the profile, then there should be addi-
tional “if available” script commands to ensure that all other shell commands
in the profile were present before adding the profile name.

Lines 68–70
This section makes sure that the target directory is in the path, which is a list of

directories that the shell searches for executables and scripts. The path is stored in
the path environment variable. Since the script has already copied the script execut-
able to the target directory, the available operator should return nonzero if the
target directory is already in the path. If it returns zero, then the path environment
variable is updated with the target directory.

How to Make a Shell Script Appear as a Boot Option

UEFI Shell scripts and shell executables can be launched directly from the boot man-
ager. The UEFI boot manager relies on the contents of several EFI variables to deter-
mine the boot order. The bcfg command can add new boot options easily. The UEFI
Shell itself is a standard UEFI application that can take command-line arguments that
are encoded as part of the boot option. First, let’s create a small script, shown in Fig-
ure 9.8, that just prints a message and then waits for a key to be pressed.

1 #
2 # HelloWorld2.nsh
3 #
4
5 @echo "Hello, World, Again!"
6 @pause

Figure 9. 8: HelloWorld2.nsh

Now, let’s add the HelloWorld2.nsh script so that it will be launched as a boot option.
bcfg boot addp 1 shell.efi "Hello World Script" –opt
"helloworld2.nsh"

  Chapter 9: UEFI Shell Scripting

This adds a new boot option that will show up as “Hello World Script.” When selected,
it will launch the UEFI Shell, display “Hello, World, Again!,” wait for a keypress, and
then exit back to the UEFI boot manager.

DOI 10.1515/9781501505751-010

Chapter 10
UEFI Shell Programming

This chapter provides an overview of the techniques used when creating UEFI Shell
applications. The UEFI Shell provides additional capabilities beyond those available
to normal UEFI applications. It does this by using two additional protocols. First, the
EFI_SHELL_PARAMETERS_PROTOCOL protocol is installed on the application’s
image handle. This protocol provides access to the command-line parameters, as well
as the handle of the standard input, standard output, and standard error logical de-
vices. Second, the EFI_SHELL_PROTOCOL provides access to the file system, the
environment variables and the device mappings.

 If you go and look through the ShellPkg in EDK2 to find examples of shell appli-
cation source code, you will be disappointed. The shell command source code is
there, but they are not applications. Instead, all of the shell commands in the Shell-
Pkg are built into the shell executable directly, using statically linked libraries. They
can’t be delivered as standalone executables. There are a few examples in the Ap-
pPkg, but the best ones there are generally ports of other open source projects.

In this chapter, however, the full source code of five UEFI Shell applications is
presented, along with detailed notes. These notes are designed to help understand
what the applications are doing and how the shell resources are being used.

 For information on setting up the build environment, see “Setting Up the Build
Environment” later in this chapter.

A Simple UEFI Shell Application: HelloWorld

To create the simplest of UEFI Shell applications requires a:
■ New C (.c) source file. This is the file processed by the compiler
■ New component information (.inf) file. This describes how to build a single driver

or application
■ Modified build description (.dsc) file. This integrates the component into the over-

all build process

The Source File: HelloWorld.c

The simplest pure UEFI Shell application requires only a few lines, as show in
Figure 10.1:

  Chapter 10: UEFI Shell Programming

Figure 10.1: Simple UEFI Shell Application Source Code

Lines 6–9
The header file Uefi.h provides all of the fundamental UEFI type definitions. The li-
brary header files UefiLib describes wrappers around standard UEFI boot and runtime
services.

Lines 10–15
This is the main function for a pure UEFI application. The UEFI Shell will pass in the
number of arguments (Argc) and a pointer to an array of pointers to each of the argu-
ments. The arguments are of type CHAR16 (not char or CHAR8), indicating that they
are Unicode, not ASCII.

Line 17
Print() is a printf-like function that outputs the string to the standard console de-
vice.

Line 19
Returning SHELL_SUCCESS (0) indicates that there was no error. A non-zero
value indicates an error.

 A Simple UEFI Shell Application: HelloWorld  

The Component Information (.inf) File

The component information (.inf) file shown in Figure 10.2 describes the component
and the information necessary to build a single application, driver, or library. This
includes source files, build options, libraries, etc.

Figure 10.2: Simple UEFI Shell Application Component Information File

Lines 7–13
The [defines] section lists various attributes of the component being built.

The INF_VERSION (line 8) attribute specifies the revision level of the file format.
In this case, it is 1.6.

The BASE_NAME (line 9) attribute gives the name of the output UEFI shell appli-
cation executable.

The FILE_GUID (line 10) specifies a GUID (globally unique identifier) associated
with the UEFI shell application. This GUID must be unique within the entire build
system described by the build description (.dsc) file.

The MODULE_TYPE (line 11) attribute specifies what type of component being
built. In this case, it is a UEFI application. This is the same module type for all UEFI
applications.

  Chapter 10: UEFI Shell Programming

The VERSION_STRING (line 12) attribute is a simple version number that is built
into the application’s executable image.

The ENTRY_POINT (line 13) attribute specifies the name of the entry point for
the application. The entry point for your application depends on the entry point li-
brary that the application is linked against. In this case, ShellCEntryLib requires
this entry point.

Lines 15–16
The [Sources] section lists all of the source files in this component. In this case, it
is a single C file: HelloWorld.c.

Lines 18–20
The [Packages] section lists the relative path of the package declaration (.dec) file
of all code packages on which this component depends. The path is relative to the
WORKSPACE environment variable, which is the root of the build tree. More on this
later. In this case, the MdePkg contains the declarations for all fundamental UEFI head-
ers, libraries, and types. The ShellPkg contains the declarations for all UEFI Shell head-
ers, libraries, and types. The declaration files advertise what the packages can provide
to the build: GUIDs, protocols, include directories, libraries, etc.

Lines 22–24
The [LibraryClasses] section lists all of the library types on which this compo-
nent is dependent. A library class defines a type of library. Each library class has a
header file, but there may actually be several different implementations of that li-
brary, for different operating environments or even different behaviors. In this case,
we are using two basic library classes for our application: UefiLib, which provides
wrappers for basic UEFI services and ShellCEntryLib, which provides the wrapper
around this type of UEFI Shell application.

A Simple Standard Application: HelloWorld2

The next example shows how to create a standard C application. This UEFI Shell ap-
plication does the same thing as the first example, except it uses the standard C li-
brary that is available with EDK2. This standard C library provides nearly all of the
Posix-defined functions, from strcpy to malloc to fopen. More importantly, it
also provides the standard C entry point.

The Source File: HelloWorld2.c

Figure 10.3 shows how it’s done:

 A Simple Standard Application: HelloWorld2  

Figure 10.3: Hello World Application Using Standard C Library

Line 6
The first noticeable difference is that the only #include used in this application is the
<stdio.h> header file. So there is no reference to any of the UEFI functions. To use the
UEFI functions, those header files must be included separately.

Line 13–14
The second noticeable difference is that the entry point function main looks just like
the one for a standard C application (because it is!). While both this application and
the previous example have the number of command-line parameters and pointers to
each parameter’s text, this version provides those parameters in ASCII instead of
Unicode.

Line 16
The final noticeable difference is that this example application uses the standard C
function printf. It is very similar to the Print() function provided by the UEFI
library, but some of the format specifiers are slightly different.

The Component Information (.inf) File: HelloWorld2.inf

Figure 10.4 shows the component information (.inf) file for this application. There are
a few crucial differences for a standard C UEFI Shell application.

  Chapter 10: UEFI Shell Programming

Figure 10.4: The HelloWorld2.inf Component Information File.

Line 17
The first major difference is a new package in the [Packages] section. The
StdLib/StdLib.dec file provides all necessary attributes for the source code package
containing the standard C library.

Lines 22–23
The second major difference is that the LibraryClasses only specify the LibC and
LibStdio library classes. These are the static libraries that provide all of the UEFI Shell
implementation details for the standard C library.

Read Keyboard Input in UEFI Shell Scripts: GetKey

Now let’s try creating a UEFI Shell application that does something useful! GetKey
optionally prints out a message, waits for a key to be pressed, converts that key into
a human-readable text string and then outputs that text to the screen or to an envi-
ronment variable. For example, “Ctrl+Alt+F1” or “j” or “Shift-PgUp”.

UEFI Shell scripts can use the output to ask for file names, IP addresses, or just
wait for the user to be ready. In this sense, it an advanced version of the built-in pause
UEFI Shell command. An example of how to use this application in a script is shown
in Chapter 9, “UEFI Shell Scripting.”

 Read Keyboard Input in UEFI Shell Scripts: GetKey  

The command has the syntax:
GetKey [prompt][env-var-name]

GetKey -?

prompt is what will be displayed to the user and env-var-name is the name of the en-
vironment variable store the resulting key text in. If an error is returned, then an error
occurred or the user pressed Ctrl-C.

The Source File: GetKey.c

This UEFI Shell application starts with the global declarations from GetKey.c showing
in Figure 10.5.

Figure 10.5: Global Declarations from GetKey.c.

Lines 6–11
These include all of the global UEFI definitions (line 6), library definitions (7-10), and
UEFI protocol definitions (10-11). Only a few of these are new:

UefiBootServicesTableLib.h defines a single global data variable gBS, which
points to the UEFI Boot Services table.

EfiShell.h defines the Shell protocol (EFI_SHELL_PROTOCOL) that gives ac-
cess to the UEFI Shell’s resources, including environment variables, file services, and
help text support.

  Chapter 10: UEFI Shell Programming

SimpleTextEx.h defines the Simple Text Input protocols (EFI_SIM-
PLE_TEXT_INPUT_PROTOCOL and EFI_SIMPLE_TEXT_INPUT_EX_PROTO-
COL) that provide the APIs for reading keystrokes from the input devices. The in-
stance provided by the UEFI Shell extends this to take input from redirected files (<
file-name) and redirected environment variables (<v env-var-name).

Line 13
This global variable indicates whether the command-line specified display of help
text (TRUE) or not (FALSE).

Line 15
This global variable indicates the prompt that will be displayed to the user before
waiting for the input key. If this is NULL, then no prompt will be displayed.

Line 16
This global variable indicates the name of the UEFI Shell environment variable that
the resulting converted key text will be stored in, or NULL if the key text will be dis-
played to standard output.

Line 18
This global variable points to the Shell protocol instance, which is used to access all
of the Shell protocol services.

Now that the global variables have been declared, we can look at the GetKey entry
point, shown in Figure 10.6.

 Read Keyboard Input in UEFI Shell Scripts: GetKey  

Figure 10.6: Entry Point in GetKey.c.

Lines 179–184
This application uses the same entry point style as HelloWorld.

Lines 186
This local variable holds the return status for this UEFI application. Notice that it uses
the type SHELL_STATUS. This is different from the type EFI_STATUS used in UEFI
drivers. The main difference is that SHELL_STATUS values (such as
SHELL_OUT_OF_RESOURCES) do not have the most significant bit set.

  Chapter 10: UEFI Shell Programming

Line 187
This local variable holds the key that is read from the user. The type EFI_KEY_DATA
is a standard UEFI data type, described in Chapter 11 of the UEFI Specification. It
holds the keyboard scan code and the keyboard shift state. More on this later.

Line 188
This local variable is a string that holds the key text.

Line 190–192
The function ParseCommandLine() grabs all of the command-line arguments
and puts them into the global variables gHelpUsage, gPrompt and gEnvVar. If there
was an error or help was displayed, just exit.

Line 195–197
If a prompt was specified as the first command-line parameter, then print it.

Line 199–201
This section reads the key using ReadKey() and, if there was no error, converts it
to the key text using the function ConvertKeyToText(). ReadKey() might gen-
erate an error if, for example, the user pressed Ctrl-C during script execution.

Line 202–207
If an environment variable name was specified as the second command-line parame-
ter, then create it or change its value to the string returned from ConvertKeyTo-
Text(). It does this using the Shell protocol function SetEnv(), which takes the
environment variable name, the new environment variable value, and a Boolean that
specifies whether the environment variable should be volatile or non-volatile. Non-
volatile environment variables persist across system reset, while volatile ones do not.

If no environment variable name was specified, then the key text is displayed via
standard output.

Line 209–210
Exit from the application with the status.

The next section, shown in Figure 10.7, handles the simple command-line pro-
cessing for this application. Walking through each command-line option, it examines
them and sets global variables accordingly.

 Read Keyboard Input in UEFI Shell Scripts: GetKey  

Figure 10.7: Parse Command Line in GetKey.c.

Lines 55–66
This function sets the global variables to default values. The value of NULL is used to
indicate that no command-line option has been found for that global variable.

Line 67
This loop walks through all of the command-line options passed to this application.
The UEFI Shell automatically divides the command-line into options using
whitespace. Argv[0] is the actual command used when referring to this application.

Lines 68–74
There is only a single command-line flag. Flags are prefixed with the character “-”. If
there is a request for help (-?) then set the flag. If there is none, but the command-line

  Chapter 10: UEFI Shell Programming

option has a hyphen as its first character, then print an error message and return with
an error.

Lines 75–76
If this wasn’t a flag, and no prompt has been specified, then save the command-line
option as the prompt.

Line 77–78
If this wasn’t a flag and no prompt or environment variable name has been specified,
then save the command-line option as the environment variable name.

Line 79–83
Otherwise, display an error message and return.

Line 85
Return successfully.

Now that all of the basics for the program have been completed, we can actually
read a key, as shown in Figure 10.8.

Figure 10.8: Read a Key in GetKey.c.

 Read Keyboard Input in UEFI Shell Scripts: GetKey  

Line 20–21
This function reads a key and places the resulting key information into Key. If every-
thing goes according to plan, this function returns SHELL_SUCCESS. If someone
presses Ctrl-C, it returns SHELL_ABORTED.

Lines 24–25
These local variables implement a simple array of event handles. UEFI defines
events that can be signaled so that waiting applications can resume execution. The
UEFI Shell signals an event when the user presses Ctrl-C. This event—Execu-
tionBreak—is one of the members of the Shell protocol. The keyboard driver has
another event that it signals any time there is a key pressed. This event—Wait-
ForKey—is a member of both the Simple Text and Simple Text Extended protocols.
EventIndex indicates which of the two events was signaled: 0 = key press, 1 =
Ctrl-C.

Lines 28–34
There are two different UEFI protocols for reading keys. The Simple Text protocol is
the older one, and is required. The Simple Text Extended protocol is newer, and pro-
vides more information, but is optional.

The UEFI System Table (gST) provides the handle of the driver (Con-
soleInHandle) that provides the console services and a pointer to the Simple Text
Input protocol installed on that handle (Con). However, there is no pointer to the
Simple Text Extended protocol in the UEFI System Table. As a result, this function
tries to see an instance is installed on the console services handle using the UEFI boot
service HandleProtocol().

This code initializes the first element in the event array with the WaitForKey
event handle. It prefers the event handle from the Simple Text Extended protocol.

Line 35
The second element in the event array is initializes with the ExecutionBreak
event handle.

Lines 37–39
Then the UEFI boot service WaitForEvent() pauses the execution of the applica-
tion and waits for one of the two events in the event handle array to be signaled. Upon
return, EventIndex will hold the index of the actual event signaled.

If there was an error, or Ctrl-C was pressed, exit the function with the
SHELL_ABORTED status code.

  Chapter 10: UEFI Shell Programming

Line 42–47
If the Simple Text Input Extended protocol is supported, then read the key data using
the ReadKeyStrokeEx() member of that protocol. Otherwise, use the ReadKey-
Stroke() member of the Simple Text Input protocol. In this case, the shift state is
initialized to zero, since the older protocol doesn’t support that field. Effectively, this
means that the Alt and Shift modifier keys can’t be detected in this case.

Lines 49–52
Return with the correct error code. This function can’t just return back the status code
it received from ReadKeyStroke() or ReadKeyStrokeEx(), because they re-
turn type EFI_STATUS while this function must return type SHELL_STATUS. Ra-
ther than try to decode and translate all possible return values, GetKey simply con-
verts all errors to SHELL_DEVICE_ERROR.

Now we have arrived at the heart of the program, which parses the key data and
produces the key text. This starts with the main function, ConvertKeyToText(),
as shown in Figure 10.9

Figure 10.9: Converting Keys to Key Text in GetKey.c.

Lines 144–145
This function takes the key data returned from ReadKey() as input and returns a
null-terminated string that contains the key’s description as human-readable text.

 Read Keyboard Input in UEFI Shell Scripts: GetKey  

Lines 147–150
The key text is assembled in KeyChar. It is a local variable, but its storage class is
static, which means that the variable doesn’t disappear when the function returns.
This is handy, because we want to return a pointer to this variable but don’t want to
clutter up the global namespace. The string is initialized to null-terminated so that
subsequent calls to StrCat() (below) will append correctly.

Lines 152–155
This section checks to see if the “Ctrl+” text should appear in the key text. This hap-
pens in two cases: when one of the control keys are pressed or when the key scan code
returns an ASCII value less than 0x20, indicating a control value. The last case is nec-
essary because the Simple Text Input protocol doesn’t return the shift state, but does
return control characters.

 Note: Yes, there are separate indicators for left and right of all modifier keys, and it is possible to
detect them separately.

Lines 156–158
This section detects if the “Alt+” text should appear in the key text. This happens
when one of the alternate (Alt) keys are pressed. Notice that at this point, there may
or may not be a Ctrl+ in the buffer, so we need to append our string.

Lines 159–161
This section detects if the “Shift+” text should appear in the key text. This happens
when one of the shift keys are pressed.

 Note: It is possible to get Shift-z (lower-case Z). For example, if Caps Lock is set, then pressing Shift-
Z will return a lower-case ‘z’ instead of an upper-case ‘z’. The shift modifier refers to the shift keys,
not to the returned scan code.

 Note: There are other modifier keys described in the UEFI specification, such as the Logo, Menu, and
System Request (SysReq) keys, but I’ve left those for future expansion.

Lines 163–165
If this key is not a normal printable character, like Page-Up or Escape or one of the
control characters, then the UnicodeChar field member has the value of 0. In this
case, the key’s value is found in the ScanCode member and appended to the end of
the string.

  Chapter 10: UEFI Shell Programming

Lines 166–174
Otherwise, the key represents some sort of printable character. The exception to this
rule are control characters, which have a character value of 0x01 – 0x1f. In this case,
we up-shift the value to 0x40-0x5F and append that character to the key text.

Line 175
Now the function returns the pointer to the assembled key text.

The final section, shown in Figures 10.10 and 10.11, describes ConvertScan-
CodeText(), which converts scan codes for non-printable characters to human
readable text. The function uses a switch statement instead of a lookup array because
the values are non-contiguous and this is easier to read and understand.

Figure 10.10: ConvertScanCodeText() in GetKey.c, Part 1.

 Read Keyboard Input in UEFI Shell Scripts: GetKey  

Figure 10.11: ConvertScanCodeToText() in GetKey.c, Part 2.

Lines 89–90
This function takes a scan code on input and returns a null-terminated string on exit.

Lines 91–142
This switch statement simply translates from a value to a text string, or else “Un-
known” if the value isn’t known.

The Component Information (.inf) File: GetKey.inf

Figure 10.12 shows the component information (.inf) file for this application. It is very
similar to the first application.

  Chapter 10: UEFI Shell Programming

Figure 10.12: Component Information (.inf) File for GetKey.

Lines 22–23
The only point of interest in this file is the declaration of the protocol gEfiSim-
pleTextInputExProtocolGuid’s GUID. The value for this GUID can be found
in MdePkg.dec. By declaring it here, its value will be automatically generated into the
component.

 Calculate Math Expressions: Math  

The Build Description (.dsc) File

The changes to the build description file are very similar to those for the previous
applications.

Figure 10.13: Extracted Portions of a Build Description (.dsc) File.

Line 1
The [LibraryClasses] section specifies a mapping between a library class (as
we saw back in Lines 22-24 of the .inf file) and the component information file for a
specific library. This allows the association between library class and actual library
to be manipulated at the project level, not just at the individual component level. In
this case, UefiLib (line 3) is associated with a standard component in the MdePkg
while ShellCEntryLib (line 4) is associated with a component in the ShellPkg. ShellLib
provides the Shell protocol instance.

Line 7
The [Components] section specifies those components that will be built. Here we
list the relative path of the application’s .inf file, relative to WORKSPACE.

Calculate Math Expressions: Math

While the UEFI Shell provides a number of operators with the built-in “if” script op-
erator, these are mostly limited to Boolean operators, such as greater than, or less
than, or equal. But what if you need a more complicated expression, including addi-
tion or subtraction. For example, if you read a value from a memory-mapped I/O lo-
cation and need to isolate a single bit in order to make a decision in a script file. Wel-
come to Math, an application that treats the command-line arguments as expressions
and outputs the result to standard output. The expression uses standard C-style op-
erator precedence, all terms are unsigned 64-bit integers.

For example:
Math 4 + 5
9

  Chapter 10: UEFI Shell Programming

Or:
Math 9 shl 1
18

Or:

set ABC 3
Math %ABC% and 1
1

The operators are (in order of lowest-to-highest priority):
and Bitwise AND
or Bitwise OR
==/eq Equal
!=/ne Not Equal
ge Greater Than or Equal
le Less Than or Equal
lt Less Than
gt Greater Than
shl Shift Left
shr Shift Right
+ Add
- Subtract
* Multiply
/ Divide
mod Modulus
not,! Logical Not
~ Bitwise Not
() Parentheses

The Source File: Math.c

This section, displayed in Figure 10.14, describes the global variables and necessary
header files.

 Calculate Math Expressions: Math  

Figure 10.14: Global Variables in Math.c

Lines 5–9
These include the standard UEFI definitions (Uefi.h) and the various library class
header files. UefiLib.h describes standard wrapper functions. ShellCEntryLib.h han-
dles the entry point. ShellLib wraps UEFI Shell services. EfiShell.h encapsulates the
EFI_SHELL_PROTOCOL definition.

Line 12
This variable is used to record the command-line parameters related to showing
help.

Lines 14–20
This is the forward declaration to the main expression parsing subroutine.

 The next section describes the main entry point, ShellAppMain, shown in
Figure 10.15.

  Chapter 10: UEFI Shell Programming

Figure 10.15: Entry Point for Math.c.

Lines 339–344
This UEFI Shell application uses the version of the UEFI Shell application entry point
that provides the argument count (Argc) and pointers to the arguments (Argv).

Line 346
The calculated result will be placed into Result.

Lines 348–351
This kicks off the parsing by calling the main expression parsing function Par-
seExpr. If there is an error, then it will print out an error message and return with
an error code.

Lines 353–354
Otherwise, print out the result and exit with success.

Now ParseExpr() is the top-level function for the expression parsing. The util-
ity uses a standard recursive-descent parser, shown in Figure 10.16.

 Calculate Math Expressions: Math  

Figure 10.16: Top Level Parsing Function ParseExpr() in Math.c

Lines 316–321
This function takes information about the command line, such as the command-line
argument count and pointers to the command-line arguments. It also takes a pointer
to the 64-bit unsigned integer that will hold the result.

Lines 323–328
Parsing starts with the second command-line argument. The first command-line ar-
gument is the command-line of this application (that is, Math). So we pass this into
the parsing function for the lowest priority parsing function (ParseExpr5). If an error
is returned, then that error is returned back.

Lines 329–332
If the current argument returned from ParseExpr5() isn’t past the last command-
line argument, it means that the parsing functions didn’t recognize something and
parsing stopped. This happens when an unidentified operator identifier is found. So
we’ll return an error.

Lines 333
Everything went according to plan and the resulting value is in Result.

The next section shows a simple utility function that is used for checking whether
an operator is present on the command-line, as shown in Figure 10.17 and, if so, move
to the next argument.

  Chapter 10: UEFI Shell Programming

Figure 10.17: Parse operators on the command-line in Math.c.

Lines 23–29
This function takes the same command-line arguments as the other parsing func-
tions, a pointer to the current argument index (Arg), the number of arguments on the
command-line (Argc), and an array of pointers to the arguments (Argv). It also takes
a pointer to a null-terminated string that specifies the token that is being checked for
on the command line.

Line 31–36
If there are any more arguments on the command line (line 31) and the current com-
mand-line argument matches the passed-in token string, then increment the argu-
ment index and return TRUE. This uses the library function StrCmp, which is a UEFI-
specific case-sensitive comparison function for null-terminated Unicode strings—
very similar to strcmp() in the C standard library.

Line 37
If there were no more arguments or the current argument didn’t match, then nothing
happens and the function returns FALSE.

The next section describes ParseExpr5() – ParseExpr1(), shown in Fig-
ures 10.18-10.22. These all take the same basic form: try to parse something high in
priority, then look for an operator and, if present, parse another value of equal or
higher priority, then calculate the resulting operation value and return.

 Calculate Math Expressions: Math  

Figure 10.18: Parsing “bitwise and” and “bitwise or” operators in Math.c.

Lines 285–291
These parsing functions all take the same form: a pointer to the current argument
index, the argument count, an array of pointers to all arguments, and a pointer to the
returned result value. When the function successfully parses something, the current
argument index is incremented.

Lines 293–294
These parsing functions declare the unsigned integer value that is left of the operator
and right of the operator.

  Chapter 10: UEFI Shell Programming

Lines 296–298
First, the function attempts to evaluate any higher priority operators to the left of the
operators at this priority level and puts the result in Left. If anything was parsed, then
Arg will be updated to point to the first argument after the last one parsed. For exam-
ple, the expression 5 + 3 AND 6 will have a call stack.
■ ParseExpr5, ParseExpr4, ParseExpr3, ParseExpr2, ParseExpr1, ParseExprTerm,

Left = 5,
■ Return back to ParseExpr3,
■ parse the ‘+’, ParseExpr4, ParseExprTerm, Right = 3,
■ Return back to ParseExpr3, Left = 8 (5 + 3),
■ Return back to ParseExpr5,
■ Parse the ‘AND’, ParseExpr4, ParseExpr3, ParseExpr2, ParseExpr1, ParseEx-

prTerm, Right = 6,
■ Return back to ParseExpr5, Left = 8 AND 6 (12), return with Result = 12.

It is a little tricky because of recursion, but forms the basis of almost all expression
parsing algorithms, although others may have optimizations.

Line 300
Next, after getting a value from the higher priority operators, we check if there is an
AND operator using the ParseExprToken() function. If this function returns
TRUE, it indicates that the AND operator was present, and Arg will be updated. The C
operator ‘&’ could not be used. See Lines 303ff for a detailed explanation.

Lines 301–306
Now we have to find the right-hand value for the AND operator. Notice that Par-
seExpr5() is called (same operator priority) rather than ParseExpr4() (higher
operator priority). That is because C-style operator precedence says that operators of
the same priority are processed left to right. After the result comes back, the bitwise
AND is calculated and the result is stored in Result.

Line 307–314
This is the same as lines 301-306, except for the logical OR operator. The C operator ‘|’
could not be used because ‘|’ has a special meaning on the command-line. So OR was
used instead. Even though ‘&’ could have been used for bitwise AND, AND was cho-
sen instead for consistency.

Line 316–317
If Math gets to this point, it means that there was no operator of this priority level
present. So it transfers the value from the higher priority operators from Left into Re-
sult, since no operator will be processed.

 Calculate Math Expressions: Math  

Figure 10.19a: Parse Equality Operators in Math.c.

Lines 229–231
First, parse the left side of the equality operators using ParseExpr3() and put the
result in Left.

Lines 233–240
Handle the processing of the equality (== or eq) operator.

Lines 241–248
Handle the processing of the inequality (!= or ne) operator.

  Chapter 10: UEFI Shell Programming

Lines 249–254
Handle the processing of the greater-than or equal (le) operator.

Figure 10.19b: Parse Equality Operators in Math.c.

Lines 255–261
Handle the processing of the less-than or equal (le) operator.

Lines 262–268
Handle the processing of the less-than (lt) operator.

Lines 269–276
Handle the processing of the greater-than (gt) operator.

Lines 277–278
Otherwise, if there was no comparison operator, return the higher priority operator
results.

 Calculate Math Expressions: Math  

Figure 10.20: Parsing Shift Operators in Math.c.

Lines 194–196
Get the left side of the operators by calling ParseExpr2().

Lines 198–212
Check for the shift-left operator (199-205) and shift-right operator (206-216) and, if
present, perform the operators and place the result in Result. “shl” and “shr” were
used instead of the more traditional << and >> operators found in C because >> has a
special meaning (create and redirect to file) in the UEFI Shell.

Lines 214–215
If there were no shift operators, transfer Left to Result and return.

  Chapter 10: UEFI Shell Programming

Figure 10.21: Parsing Addition and Subtraction Operators in Math.c.

Lines 148–181
Handle the parsing of the plus and minus operators and calculate the results.

 Calculate Math Expressions: Math  

Figure 10.22: Parsing Multiplication, Division and Modulo Operators in Math.c.

Lines 110–147
Using the same style, handle the multiplication (*), division (/), and modulo opera-
tors (mod). The C operator % could not be used because % has a special meaning in
command-line processing, introducing environment variable names.

The next section, shown in Figure 10.23, describes ParseExprUnary(), which
deals with unary operators, such as “not” (logical not) and “~” (bitwise not).

  Chapter 10: UEFI Shell Programming

Figure 10.23: Unary operators in Math.c.

Line 84
Unlike binary operators, Math is only concerned with what appears to the right of the
operators. Math doesn’t support any of the C programming languages post-fix opera-
tors (such as ++), so that makes things simpler.

Lines 86–87
For unary operators, the operator is checked first. In this case, it is checking for the
logical NOT operators (“not” or its alias “!”).

Lines 88–93
For these operators, these lines try to get the value to the right of the operator and, if
successful, place the result in Result.

Lines 94–101
These do the same thing, but for the bitwise NOT operator (“~”).

 Calculate Math Expressions: Math  

Line 103
If neither of the unary operators were present, then just get a simple term by calling
ParseExprTerm().

Finally, for the last section, Math handles the parsing of unsigned integers and
parentheses, shown in Figure 10.24.

Figure 10.24: Parsing unsigned integers and parentheses in Math.c.

Lines 55–61
First, check for the left parentheses operator. Parentheses are handled by simply call-
ing the lowest priority operator parser (ParseExpr5()) and then looking for the
right parentheses.

Lines 62–67
If there are any more command-line arguments, then the only legal possibility is that
it is an unsigned integer. The function ShellConvertStringToUint64() is a
standard library function that converts a null-terminated string to an integer. If the
number is prefixed by a “0x” then it is treated as hexadecimal. Otherwise, it is treated
as decimal unless the third parameter is set to TRUE (which we don’t).

Lines 68–72
At this point, there are no legal options left, so print an error.

  Chapter 10: UEFI Shell Programming

The Component Information (.inf) File: Math.inf

Figure 10.25: Component Information (.inf) File for Math.

Lines 1–25
This is a fairly simple component information file, where only BASE_NAME and
FILE_GUID have been updated from the one found in the HelloWorld UEFI Shell
application.

Convert ASCII to Unicode and Back: UniCodeDecode

The UniCodeDecode application converts to and from ASCII and Unicode UCS-2 en-
coded files. It supports explicit control by the user as to the file formats and also em-
ploys various forms of auto-detection, using either the Unicode-defined file marker or
some heuristics.

The application has the syntax:

ucd -?

ucd input-file output-file [-a2u|-u2a]

 Convert ASCII to Unicode and Back: UniCodeDecode  

This application demonstrates several key shell capabilities:
■ File Handling. This application shows how to create, open, and write files.
■ Command-Line Handling. This application shows more advanced command-line

handling, including defaulting and error checking.
■ Help Text. This application shows how to use the built-in help text support.
■ Unicode. This application delves into some of the Unicode handling aspects of

UEFI applications, including file markers. The UEFI specification uses Unicode’s
UCS-2 (little-endian) extensively. UCS-2 differs from UTF-16 in that it does not
handle surrogate pairs. For more information, see www.unicode.org.

The Source File: UniCodeDecode.c

The entry point source code, shown in Figures 10.26 and 10.27, performs the basic
initialization and then walks through the four basic steps: parsing the command-line,
opening the input and output files, converting the file, and then closing the files.

Figure 10.26: Command-line related global variables in UnicodeDecode.c.

Lines 48–53
These Booleans record the presence of specific command-line options, including the
–a2u, -?, –u2a, and pointers to the input and output file names.

Lines 55–56
These file handles are used during the actual processing of the files.

Lines 58
The global pointer to the Shell protocol. This pointer is initialized by the Shell library.

  Chapter 10: UEFI Shell Programming

Figure 10.27: Entry point in UnicodeDecode.c.

Lines 307–310
Parse the command-line options. If there was an error, exit. If help was requested,
show it.

Lines 316–319
Open the input and the output files, and optionally detect the file type.

Lines 321–325
If the input file is an ASCII file, then convert it to Unicode. If the input file is a Unicode
file, then convert it to ASCII.

 Convert ASCII to Unicode and Back: UniCodeDecode  

Lines 327-333
Close the files and exit.

Figure 10.28: Command-line parsing in UnicodeDecode.c.

Lines 68–88
Walk through each of the command-line options. If the option starts with a ‘-’ charac-
ter, then check for -?, -a2u, or –u2c. If not, generate an error. If the option does not

  Chapter 10: UEFI Shell Programming

start with a ‘-’ character, then assign that option to the input file name or output file
name, if they haven’t already been specified.

Lines 90–101
If help was requested, then ignore everything else. Otherwise, verify that both an in-
put and output file names have been specified.

The next section opens the input file, checks for the file type, and then opens the
output file, shown in Figures 10.29 and 10.30.

Figure 10.29: Open the input files in UnicodeDecode.c.

Lines 109–117
Opens the input file for reading and saves the handle for later usage. If the file can’t
be opened, display an error.

 Convert ASCII to Unicode and Back: UniCodeDecode  

Lines 119–138
If the user didn’t explicitly specify whether to do ASCII-to-Unicode or Unicode-to-
ASCII conversion, try to auto-detect by reading the first two bytes of the input file. If
it is the Unicode byte-order mark, convert from Unicode to ASCII. If either byte is a
zero, then convert from Unicode to ASCII. Otherwise, assume it must be ASCII-to-
Unicode. After reading the two bytes, reset the file position to the start of the file.

Figure 10.30: Create the output file in UnicodeDecode.c.

Lines 140–151
Creates the output file and opens it for writing, saving the handle for later usage. If
the file can’t be created, close the input file and display an error. If
EFI_FILE_MODE_CREATE is not specified, then the file must already exist.

These functions, show in Figures 10.31 through 10.34, use a very simple algo-
rithm, reading one character at a time from the input file, converting it, and then writ-
ing the converted character to the output file. The GetFileSize() function re-
turns the file’s entire size while ReadFile() and WriteFile() write n characters
from/to the specified file.

In general, the translation between the two character sets is straightforward,
since the first 256 characters in the UCS-2 (and UTF-16) Unicode character sets match
those in the ISO-Latin-1 ASCII character set. However, there are several places where
there is more than one Unicode character value that can be translated to a single
ASCII character. In particular, the small and wide forms of letters and punctuation.

  Chapter 10: UEFI Shell Programming

Figure 10.31: Convert ASCII to UCS-2 in UnicodeDecode.c.

Lines 182–186
Get the file size using GetFileSize(). If the file size can’t be read or the file size
is zero, exit with an error message.

Lines 189–195
Read a single ASCII character.

Lines 197–204
Write a single UCS-2 character.

Lines 206–207
Continue until we have converted all characters in the input file.

 Convert ASCII to Unicode and Back: UniCodeDecode  

Figure 10.32: Convert UCS-2 to ASCII in UnicodeDecode.c.

Lines 268–272
Get the file size using GetFileSize(). If the file size can’t be read or the file size
is zero, then exit with an error message.

Lines 275–281
Read a single character using ReadFile().

Lines 283–284
Up until this point, this function has matched the flow of ConvertAsciiToUnic-
ode(). But here, the function calls ConvertUcs2ToAsciiChar() to handle the
cases where the UCS-2 encoded character is outside the range of ASCII characters. If
this function returns a null character (‘\0’), then don’t write it.

  Chapter 10: UEFI Shell Programming

Lines 287–292
Write a single character using WriteFile().

Lines 294–295
If there are no more files left to write, then exit.

Figure 10.33: Converting extended Unicode characters to ASCII in UnicodeDecode.c.

Lines 213–245
There are several cases where the Unicode specification describes “small” versions of
punctuation characters. In a few other cases, there are non-printing characters, such
as the byte-order marks or the non-breaking space.

 Convert ASCII to Unicode and Back: UniCodeDecode  

Figure 10.34: Converting wide UCS-2 characters to ASCII in UnicodeDecode.c.

Lines 247–252
If the UCS-2 character is a wide version of the ASCII character, or an ASCII character,
then return the ASCII equivalent, between 0x00 – 0xFF.

Lines 255
Otherwise, return the ‘?’ character, when replacing a Unicode character that does not
have an ASCII equivalent.

The Component Information (.inf) File

The component information (.inf) file shown in Figure 10.35 describes the component
and the information necessary to build a single application, driver, or library. This
includes source files, build options, libraries, and so on.

  Chapter 10: UEFI Shell Programming

Figure 10.35: UnicodeDecode Component Information File.

Lines 1–28
This is a fairly simple component information file, where only BASE_NAME and
FILE_GUID have been updated from the one found in the HelloWorld UEFI Shell
application.

DDOI 10.1515/9781501505751-011

Chapter 11
Managing UEFI Drivers Using the Shell

He has half the deed done who has made a beginning.
—Horace

Several UEFI Shell commands can be used to help debug UEFI drivers. These UEFI
Shell commands are already documented in the UEFI 2.0 Shell Specification, so the
full capabilities of the UEFI Shell commands are not discussed here. There is also a
built-in UEFI Shell command called help that provides a detailed description of an
UEFI Shell command. Figure 11.1 shows the results of issuing the “help –b” command.

Figure 11.1: The help –b Command.

  Chapter 11: Managing UEFI Drivers Using the Shell

Testing Specific Protocols

Table 11.1 lists UEFI Shell commands that can be used to test and debug UEFI drivers
along with the protocol and/or service exercised.

Table 11.1:. UEFI Shell Commands

Command Protocol Tested Service Tested

Load –nc DriverEntryPoint
Supported()

Load
Driver Binding
Driver Binding

DriverEntryPoint
Supported()
Start()

Unload Loaded Image Unload()
Connect Driver Binding

Driver Binding
Supported()
Start()

Disconnect Driver Binding Stop()
Reconnect Driver Binding

Driver Binding
Driver Binding

Supported()
Start()
Stop()

Drivers Component Name GetDriverName()
Devices Component Name

Component Name
GetDriverName()
GetControllerName()

DevTree Component Name GetControllerName()
Dh –d Component Name

Component Name
GetDriverName()
GetControllerName()

DrvCfg –s Driver Configuration SetOptions()
DrvCfg –f Driver Configuration ForceDefaults()
DrvCfg –v Driver Configuration OptionsValid()
DrvDiag Driver Diagnostics RunDiagnostics()

Other tests can be performed from within the UEFI Shell, as listed in Table 11.2. These
are not testing a specific protocol, but are testing for other coding practices.

 Loading and Unloading UEFI Drivers  

Table 11.2: Other Shell Testing Procedures

Shell Command sequence What it tests

Shell> Memmap
Shell> Dh
Shell> Load DriverName.efi
Shell> Memmap
Shell> Dh
Shell> Unload DriverHandle
Shell> Memmap
Shell> Dh

Tests for incorrectly matched up Driv-
erEntryPoint and Unload() func-
tions. This will catch memory allocation that is
not unallocated, protocols that are installed and
not uninstalled, and so on.

Shell> Memmap
Shell> Connect DeviceHandle
DriverHandle
Shell> Memmap
Shell> Disconnect DeviceHandle
DriverHandle
Shell> Memmap
Shell> Reconnect DeviceHandle
Shell> Memmap

Tests for incorrectly matched up DriverBinding
Start() and Stop() functions. This will
catch memory allocation that is not unallocated.

Shell> dh
Shell> Connect DeviceHandle
DriverHandle
Shell> dh
Shell> Disconnect DeviceHandle
DriverHandle
Shell> dh
Shell> Reconnect DeviceHandle
Shell> dh

Tests for incorrectly matched up DriverBinding
Start() and Stop() functions. This will
catch protocols that are installed and not unin-
stalled.

Shell> OpenInfo DeviceHandle
Shell> Connect DeviceHandle
DriverHandle
Shell> OpenInfo DeviceHandle
Shell> Disconnect DeviceHandle
DriverHandle
Shell> OpenInfo DeviceHandle
Shell> Reconnect DeviceHandle
Shell> OpenInfo DeviceHandle

Tests for incorrectly matched up DriverBinding
Start() and Stop() functions. This will
catch protocols that are opened and not closed.

Loading and Unloading UEFI Drivers

Two UEFI Shell commands are available to load and start UEFI drivers, Load and
LoadPciRom. The UEFI Shell command that can be used to unload a UEFI driver if it
is unloadable is Unload.

  Chapter 11: Managing UEFI Drivers Using the Shell

Load

The Load command loads a UEFI driver from a file. UEFI driver files typically have an
extension of .efi. This command has one important option, the -nc (“No Connect”)
option, for UEFI driver developers. When the Load command is used without the -nc
option, the loaded driver is automatically connected to any devices in the system that
it is able to manage. This means that the UEFI driver’s entry point is executed and
then the EFI Boot Service ConnectController() is called. If the UEFI driver pro-
duces the Driver Binding Protocol in the driver’s entry point, then the ConnectCon-
troller() call exercises the Supported() and Start() services of Driver
Binding Protocol that was produced.

If the -nc option is used with the Load command, then this automatic connect
operation is not performed. Instead, only the UEFI driver’s entry point is executed.
When the -nc option is used, the UEFI Shell command Connect can be used to con-
nect the UEFI driver to any devices in the system that it is able to manage. The Load
command can also take wild cards, so multiple UEFI drivers can be loaded at the same
time.

The following are some examples of the Load command.

Example 1 loads and does not connect the UEFI driver image EfiDriver.efi. This
example exercises only the UEFI driver’s entry point:
fs0:> Load -nc EfiDriver.efi

Example 2 loads and connects the UEFI driver image called EfiDriver.efi. This
example exercises the UEFI driver’s entry point and the Supported() and
Start() functions of the Driver Binding Protocol:
fs0:> Load EfiDriver.efi

Example 3 loads and connects all the UEFI drivers with an .efi extension from
fs0:, exercising the UEFI driver entry points and their Supported() and
Start() functions of the Driver Binding Protocol:
fs0:> Load *.efi

LoadPciRom

The LoadPciRom command simulates the load of a PCI option ROM by the PCI bus
driver. This command parses a ROM image that was produced with the EfiRom build
utility. Details on the EfiRom build utility can be found at www.tianocore.org. The
LoadPciRom command finds all the UEFI drivers in the ROM image and attempts to
load and start all the UEFI drivers. This command helps test the ROM image before it

 Connecting UEFI Drivers  

is burned into a PCI adapter’s ROM. No automatic connects are performed by this
command, so only the UEFI driver’s entry point is exercised by this command. The
UEFI Shell command Connect must be used for the loaded UEFI drivers to start man-
aging devices. The example below loads and calls the entry point of all the UEFI driv-
ers in the ROM file called MyAdapter.ROM:
fs0:> LoadPciRom MyAdapter.ROM

Unload

The Unload command unloads a UEFI driver if it is unloadable. This command takes
a single argument that is the image handle number of the UEFI driver to unload. The
Dh -p Image command and the Drivers command can be used to search for the image
handle of the driver to unload. Once the image handle number is known, an unload
operation can be attempted. The Unload command may fail for one of the following
two reasons:
1. The UEFI driver may not be unloadable, because UEFI drivers are not required to

be unloadable.
2. The UEFI driver may be unloadable, but it may not be able to be unloaded right

now.

Some UEFI drivers may need to be disconnected before they are unloaded. They can
be disconnected with the Disconnect command. The following example unloads the
UEFI driver on handle 27. If the UEFI driver on handle 27 is unloadable, it will have
registered an Unload() function in its Loaded Image Protocol. This command exer-
cises the UEFI driver’s Unload() function.

Shell> Unload 27

Connecting UEFI Drivers

Three UEFI Shell commands can be used to test the connecting of UEFI drivers to de-
vices: Connect, Disconnect, and Reconnect. These commands have many options. A
few are described in the following sections.

Connect

The Connect command can be used to connect all UEFI drivers to all devices in the
system or connect UEFI drivers to a single device. The following are some examples
of the Connect command.

  Chapter 11: Managing UEFI Drivers Using the Shell

Example 1 connects all drivers to all devices:
fs0:> Connect -r

Example 2 connects all drivers to the device that is abstracted by handle 23:
fs0:> Connect 23

Example 3 connects the UEFI driver on handle 27 to the device that is abstracted by
handle 23:
fs0:> Connect 23 27

Disconnect

The Disconnect command stops UEFI drivers from managing a device. The following
are some examples of the Disconnect command.

Example 1 disconnects all drivers from all devices. However, the use of this command
is not recommended, because it also disconnects all the console devices:
fs0:> Disconnect -r

Example 2 disconnects all the UEFI drivers from the device represented by handle 23:
fs0:> Disconnect 23

Example 3 disconnects the UEFI driver on handle 27 from the device represented by
handle 23:
fs0:> Disconnect 23 27

Example 4 destroys the child represented by handle 32. The UEFI driver on handle 27
produced the child when it started managing the device on handle 23:
fs0:> Disconnect 23 27 32

Reconnect

The Reconnect command is the equivalent of executing the Disconnect and Con-
nect commands back to back. The Reconnect command is the best command for
testing the Driver Binding Protocol of UEFI drivers. This command tests the Sup-
ported(), Start(), and Stop() services of the Driver Binding Protocol. The Re-
connect -r command tests the Driver Binding Protocol for every UEFI driver that fol-
lows the UEFI Driver Model. Use this command before an UEFI driver is loaded to

 Driver and Device Information  

verify that the current set of drivers pass the Reconnect -r test, and then load the
new UEFI driver and rerun the Reconnect -r test. A UEFI driver is not complete until
it passes this interoperability test with the UEFI core and the full set of UEFI drivers.
The following are some examples of the Reconnect command.

Example 1 reconnects all the UEFI drivers to the device handle 23:
fs0:> Reconnect 23

Example 2 reconnects the UEFI driver on handle 27 to the device on handle 23:
fs0:> Reconnect 23 27

Example 3 reconnects all the UEFI drivers in the system:
fs0:> Reconnect -r

Driver and Device Information

Five UEFI Shell commands can be used to dump information about the UEFI drivers
that follow the UEFI Driver Model. Each of these commands shows information from
a slightly different perspective.

Drivers

The Drivers command lists all the UEFI drivers that follow the UEFI Driver Model. It
uses the GetDriverName() service of the Component Name protocol to retrieve
the human-readable name of each UEFI driver if it is available. It also shows the file
path from which the UEFI driver was loaded. As UEFI drivers are loaded with the Load
command, they will appear in the list of drivers produced by the Drivers command.
The Drivers command can also show the name of the UEFI driver in different lan-
guages. The following are some examples of the Drivers command.

Example 1 shows the Drivers command being used to list the UEFI drivers in the de-
fault language:
fs0:> Drivers

Example 2 shows the driver names in Spanish:
fs0:> Drivers -lspa

  Chapter 11: Managing UEFI Drivers Using the Shell

Devices

The Devices command lists all the devices that are being managed or produced by
UEFI drivers that follow the UEFI Driver Model. This command uses the GetCon-
trollerName() service of the Component Name protocol to retrieve the human-
readable name of each device that is being managed or produced by UEFI drivers. If
a human-readable name is not available, then the EFI device path is used. The follow-
ing are some examples of the Devices command.

Example 1 shows the Devices command being used to list the UEFI drivers in the de-
fault language:
fs0:> Devices

Example 2 shows the device names in Spanish:
fs0:> Devices -lspa

DevTree

Similar to the Devices command. the DevTree command lists all the devices being
managed by UEFI drivers that follow the UEFI Driver Model. This command uses the
GetControllerName() service of the Component Name Protocol to retrieve the
human-readable name of each device that is being managed or produced by UEFI
drivers. If the human-readable name is not available, then the EFI device path is used.
This command also shows the parent/child relationships between all of the devices
visually by displaying them in a tree structure. The lower a device is in the tree of
devices, the more the device name is indented. The following are some examples of
the DevTree command.

Example 1 displays the device tree with the device names in the default language:
fs0:> DevTree

Example 2 displays the device tree with the device names in Spanish:
fs0:> DevTree -lspa

Example 3 displays the device tree with the device names shown as EFI device paths:
fs0:> DevTree -d

 Driver and Device Information  

Dh –d

The Dh -d command provides a more detailed view of a single driver or a single device
than the Drivers, Devices, and DevTree commands. If a driver binding handle is used
with the Dh -d command, then a detailed description of that UEFI driver is provided
along with the devices that the driver is managing and the child devices that the
driver has produced. If a device handle is used with the Dh -d command, then a de-
tailed description of that device is provided along with the drivers that are managing
that device, that device’s parent controllers, and the device’s child controllers. If the
Dh -d command is used without any parameters, then detailed information on all of
the drivers and devices is displayed. The following are some examples of the Dh -d
command.

Example 1 displays the details on the UEFI driver on handle 27:
fs0:> Dh -d 27

Example 2 displays the details for the device on handle 23:
fs0:> Dh -d 23

Example 3 shows details on all the drivers and devices in the system:
fs0:> Dh -d

OpenInfo

The OpenInfo command provides detailed information about a device handle that is
being managed by one or more UEFI drivers that follow the UEFI Driver Model. The
OpenInfo command displays each protocol interface installed on the device handle
and the list of agents that have opened that protocol interface with the OpenPro-
tocol() Boot Service. This command can be used in conjunction with the Connect,
Disconnect, and Reconnect commands to verify that an UEFI driver is opening and
closing protocol interfaces correctly. The following example shows the OpenInfo
command being used to display the list of protocol interfaces on device handle 23
along with the list of agents that have opened those protocol interfaces:
fs0:> OpenInfo 23

  Chapter 11: Managing UEFI Drivers Using the Shell

Testing the Driver Configuration and Driver Diagnostics
Protocols

The UEFI Shell provides a command that can be used to test the Driver Configuration Pro-
tocol, DrvCfg, and one that can be used to test the Driver Diagnostics Protocol, DrvDiag.

DrvCfg

The DrvCfg command provides the services that are required to test the Driver Config-
uration Protocol implementation of a UEFI driver. This command can show all the
devices that are being managed by UEFI drivers that support the Driver Configuration
Protocol. The Devices and Drivers commands also show the drivers that support the
Driver Configuration Protocol and the devices that those drivers are managing or have
produced. Once a device has been chosen, the DrvCfg command can be used to invoke
the SetOptions(), ForceDefaults(), or OptionsValid() services of the
Driver Configuration Protocol. The following are examples of the DrvCfg command.

Example 1 displays all the devices that are being managed by UEFI drivers that sup-
port the Driver Configuration Protocol:
fs0:> DrvCfg

Example 2 forces defaults on all the devices in the system:
fs0:> DrvCfg -f

Example 3 validates the options on all the devices in the system:
fs0:> DrvCfg -v

Example 4 invokes the SetOptions() service of the Driver Configuration Protocol
for the driver on handle 27 and the device on handle 23:
fs0:> DrvCfg -s 23 27

DrvDiag

The DrvDiag command provides the ability to test all the services of the Driver Diag-
nostics Protocol that are produced by a UEFI driver. This command shows the devices
that are being managed by UEFI drivers that support the Driver Diagnostics Protocol.
The Devices and Drivers commands also show the drivers that support the Driver Di-
agnostics Protocol and the devices that those drivers are managing or have produced.
Once a device has been chosen, the DrvDiag command can be used to invoke the

 Debugging Code Statements  

RunDiagnostics() service of the Driver Diagnostics Protocol. The following are
some examples of the DrvDiag command.

Example 1 displays all the devices that are being managed by UEFI drivers that sup-
port the Driver Diagnostics Protocol:
fs0:> DrvDiag

Example 2 invokes the RunDiagnostics() service of the Driver Diagnostics Pro-
tocol in standard mode for the driver on handle 27 and the device on handle 23:
fs0:> DrvDiag -s 23 27

Example 3 invokes the RunDiagnostics() service of the Driver Diagnostics Pro-
tocol in manufacturing mode for the driver on handle 27 and the device on handle 23:
fs0:> DrvDiag -m 23 27

Debugging Code Statements

Every module has a debug (check) build and a clean build. The debug build includes
code for debug that will not be included in normal clean production builds. A debug
build is enabled when the identifier EFI_DEBUG exists. A clean build is defined as
when the EFI_DEBUG identifier does not exist.

The following debug macros can be used to insert debug code into a checked
build. This debug code can greatly reduce the amount of time it takes to root cause a
bug. These macros are enabled only in a debug build, so they do not take up any ex-
ecutable space in the production build. Table 11.3 describes the debug macros that
are available.

  Chapter 11: Managing UEFI Drivers Using the Shell

Table 11.3: Available Debug Macros

Debug Macro Description

ASSERT (Expression) For check builds, if Expression evaluates to
FALSE, a diagnostic message is printed and the
program is aborted. Aborting a program is usually
done via the EFI_BREAKPOINT () macro.
For clean builds, Expression does not exist in
the program and no action is taken. Code that is re-
quired for normal program execution should never
be placed inside an ASSERT macro, because the
code will not exist in a production build.

ASSERT_EFI_ERROR (Status) For check builds, an assert is generated if Sta-
tus is an error. This macro is equivalent to AS-
SERT (!EFI_ERROR (Status)) but is
easier to read.

DEBUG ((ErrorLevel, String,
…))

For check builds, String and its associated ar-
guments will be printed if the ErrorLevel of
the macro is active. See Table . for a definition
of the ErrorLevel values.

DEBUG_CODE (Code) For check builds, Code is included in the build.
DEBUG_CODE (is on its own line and in-
dented like normal code. All the debug code fol-
lows on subsequent lines and is indented an extra
level. The) is on the line following all the code
and indented at the same level as DE-
BUG CODE (.

EFI_BREAKPOINT () On a check build, inserts a break point into the
code.

DEBUG_SET_MEM (Address,
Length)

For a check build, initializes the memory starting at
Address or Length bytes with the value
BAD_POINTER. This initialization is done to
enable debug of code that uses memory buffers
that are not initialized.

CR (Record, TYPE, Field,
Signature)

The containing record macro returns a pointer to
TYPE when given the structure’s Field name
and a pointer to it (Record). The CR macro re-
turns the TYPE pointer for check and production
builds. For a check build, an ASSERT () is gen-
erated if the Signature field of TYPE is not
equal to the Signature in the CR () macro.

The ErrorLevel parameter referenced in the DEBUG() macro allows a UEFI driver
to assign a different error level to each debug message. Critical errors should always
be sent to the standard error device. However, informational messages that are used

 POST Codes  

only to debug a driver should be sent to the standard error device only if the user
wants to see those specific types of messages. The UEFI Shell supports the Err com-
mand that allows the user to set the error level. The UEFI Boot Maintenance Manager
allows the user to enable and select a standard error device. It is recommended that
a serial port be used as a standard error device during debug so the messages can be
logged to a file with a terminal emulator. Table 11.4 contains the list of error levels
that are supported in the UEFI Shell. Other levels are usable, but not defined for a
specific area.

 Note: DEBUG ((ErrorLevel, String, …)) is not universally supported. Some EFI-

compliant systems may not print out the message.

Table 11.4: Error Levels

Mnemonic Value Description

EFI D INIT x Initialization messages
EFI_D_WARN x Warning messages
EFI D LOAD x Load events
EFI D FS x EFI file system messages
EFI_D_POOL x EFI pool allocation and free messages
EFI D PAGE x EFI page allocation and free messages
EFI D INFO x Informational messages
EFI_D_VARIABLE x EFI variable service messages
EFI D BM x UEFI boot manager messages
EFI D BLKIO x EFI Block I/O Protocol messages
EFI_D_NET x EFI Simple Network Protocol, PXE base code, BIS messages
EFI D UNDI x UNDI driver messages
EFI D LOADFILE x Load File Protocol messages
EFI_D_EVENT x EFI Event Services messages
EFI D ERROR x Critical error messages

POST Codes

If an UEFI driver is being developed that cannot make use of the DEBUG() and AS-
SERT() macros, then a different mechanism must be used to help in the debugging
process. Under these conditions, it is usually sufficient to send a small amount of out-
put to a device to indicate what portions of an UEFI driver have executed and where
error conditions have been detected. A few possibilities are presented below, but

  Chapter 11: Managing UEFI Drivers Using the Shell

many others are possible depending on the devices that may be available on a specific
platform. It is important to note that these mechanisms are useful during driver de-
velopment and debug, but they should never be present in production versions of
UEFI drivers because these types of devices are not present on all platforms.

The first possibility we will describe here is to use a POST card.

Post Card Debug

A POST card is an add-in card adapter that displays the hex value of an 8-bit I/O write
cycle to address 0x80 (and sometimes 0x81). If a UEFI driver can depend on the PCI
Root Bridge I/O Protocol being present, then the driver can use the services of the PCI
Root Bridge I/O Protocol to send an 8-bit I/O write cycle to address 0x80. A driver can
also use the services of the PCI I/O Protocol to write to address 0x80, as long as the
pass-through BAR value is used. Figure 11.2 shows how the PCI Root Bridge I/O and
PCI I/O Protocols can be used to send a value to a POST card.

EFI_STATUS Status;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
EFI_PCI_IO_PROTOCOL *PciIo;
UINT8 Value;

Value = 0xAA;
Status = PciRootBridgeIo->Io.Write (
 PciRootBridgeIo,
 EfiPciWidthUint8,
 0x80,
 1,
 &Value
);

Value = 0xAA;
Status = PciIo->Io.Write (
 PciIo,
 EfiPciIoWidthUint8,
 EFI_PCI_IO_PASS_THROUGH_BAR,
 0x80,
 1,
 &Value
);

Figure 11.2: POST Code Examples

 Other Options  

Text-Mode VGA Frame Buffer

The next possibility is a text-mode VGA frame buffer. If a system initializes the text-
mode VGA display by default before the UEFI driver executes, then the UEFI driver
can make use of the PCI Root Bridge I/O or PCI I/O Protocols to write text characters
to the text-mode VGA display directly. Figure 11.3 shows how the PCI Root Bridge I/O
and PCI I/O Protocols can be used to send the text message “ABCD” to the text-mode
VGA frame buffer. Some systems do not have a VGA controller, so this solution will
not work on all systems.

EFI_STATUS Status;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
EFI_PCI_IO_PROTOCOL *PciIo;
UINT8 *Value;

Value = {'A',0x0f,'B',0x0f,'C',0x0f,'D',0x0f};

Status = PciRootBridgeIo->Mem.Write (
 PciRootBridgeIo,
 EfiPciWidthUint8,
 0xB8000,
 8,
 Value
);

Status = PciIo->Mem.Write (
 PciIo,
 EfiPciIoWidthUint8,
 EFI_PCI_IO_PASS_THROUGH_BAR,
 0xB8000,
 8,
 Value
);

Figure 11.3: VGA Display Examples

Other Options

Another option that can be used if the UEFI driver being developed cannot make use
of the DEBUG() and ASSERT() macros is to use some type of byte-stream-based
device. This device could include a UART or an SMBus, for example. Like the POST

  Chapter 11: Managing UEFI Drivers Using the Shell

card, the idea is to use the services of the PCI Root Bridge I/O or PCI I/O Protocols to
initialize and send characters to the byte-stream device.

Many EFI-compliant implementations allow for the use of a COM cable to send
debug information to another system. This allows the developer or tester to see debug
code statements and other output from a separate system.

DOI 10.1515/9781501505751-012

Appendix A
Security Considerations

We will bankrupt ourselves in the vain search for absolute security.
—Dwight D. Eisenhower

This appendix describes some options for hardening the integrity of the UEFI Shell.

UEFI Shell Binary Integrity

Recall that the UEFI Shell can be stored in the platform ROM, on disk, or across the
network. For the latter two scenarios, the integrity of the UEFI Shell may be a concern
in that a possibly hostile agent in the operating system may corrupt the UEFI system
partition or a man-in-the-middle (MITM) attack may occur during the network down-
load of the UEFI Shell.

Signing of the UEFI Shell is one option to handle this case of ensuring integrity of
code introduced into the platform, especially from a mutable disk or across the net-
work.

Overview

The UEFI specification provides a standard format for executables. These executables
may be located on unsecured media (such as a hard drive or unprotected flash device)
or may be delivered via an unsecured transport layer (such as a network) or originate
from a unsecured port (such as an Express Card device or USB device). In each of
these cases, the system provider may decide to authenticate either the origin of the
executable or its integrity (that is, that it has not been tampered with).

The UEFI specification describes a means of generating a digital signature for a
UEFI executable, embedding that digital signature within the UEFI executable, and
automatically verifying that the digital signature is from the authorized source. It is
to allay concerns of the BIOS vendors regarding the wide availability of the firmware
image construction tools and documentation. The firmware tools and the encoding
can be made public, as would the security scheme used in the UEFI specification. The
privacy would only involve the private key used by the OEM in his factory to sign the
image.

One of the main goals for pre-operating-system security is to ensure various in-
tegrity goals. These goals include protecting the platform firmware from possibly er-
rant or malicious third-party content. One way to meet this goal is to ensure that bi-
nary executable content, such as a shell not built into the platform firmware itself,
comes from a well-known source. Cryptographic signatures applied to the binary with

  Appendix A: Security Considerations

the platform firmware perform the verification action prior to performing the
LoadImage/StartImage action on the executable.

The platform construction and integrity precepts used to evaluate the system can
be derived from a more formal, commercial integrity model, such as Clark-Wilson.
More information can found in Clark, David D. and Wilson, David R. “A Comparison of
Commercial and Military Computer Security Policies” in Proceedings of the 1987 IEEE Sympo-
sium on Research in Security and Privacy (SP’87), May 1987, Oakland, CA, IEEE Press,
pp. 184–193.

Signed Executable Overview

Figure A.1 shows the format of an original sample UEFI executable. The UEFI execut-
able format is compatible with Microsoft Portable Executable (PE) and Common Object
File Format (COFF) Specification, Version 8.0.

An executable primarily consists of file header, section table, and section data.
See Chapters 3, 4, 5, and 6 in the PE and COFF Specification for more detailed execut-
able structure description.

Figure A. 1: Sample UEFI Executable Format.

A signed UEFI executable encapsulates a certificate, which is used during the execut-
able load process to detect unauthorized tampering or ensure its origination. The cer-
tificate may contain a digital signature used for validating the driver. Figure A.2 illus-
trates how a certificate is embedded in the PE/COFF file.

 Signed Executable Overview  

Figure A.2: Signed UEFI Executable.

The signature of the executable is generated by a sign tool, which appends the
WIN_CERT data and signature information of the whole executable to the end of the
original file.

Digital Signature

As a rule, digital signatures require two pieces: the data (often referred to as the mes-
sage) and a public/private key pair. In order to create a digital signature, the message
is processed by a hashing algorithm to create a hash value. The hash value is, in turn,
encrypted using a signature algorithm and the private key to create the digital signa-
ture. Figure A.3 illustrates the process to create a digital signature.

  Appendix A: Security Considerations

Figure A.3: Creating a digital signature.

In order to verify a signature, two pieces of data are required: the original message
and the public key. First, the hash must be calculated exactly as it was calculated
when the signature was created. Then the digital signature is decoded using the pub-
lic key and the result is compared against the computed hash. If the two are identical,
then you can be sure that message data is the one originally signed and it has not
been tampered with. Figure A.4 illustrates the process of verifying a digital signature.

Figure A.4: Verifying a digital signature.

Therefore, the signature process dealing with the UEFI executable can be described
briefly as follows:

 Signed Executable Processing  

Hash = SHA-256 (Executable File contents)
Signature = RSA_SIGN (Private_Key, Hash)

Signed Executable Processing

Signed executable processing is accomplished by an OS-present application (Sign-
Tool.exe) that calculates the signature of a UEFI executable file (SHA-256 and
PKCS1V15 RSA_Sign) and then embeds that signature into the executable. The follow-
ing subsections define the responsibilities at each stop along the signed executable
processing path.

Signed Executable Generation Application (SignTool)

The SignTool application is an OS-present application that is responsible for locating
the executable and output a signed executable. SignTool creates an Authenticode-
formatted signature block within the PE/COFF image.

To calculate the executable digital signature that loaded into memory, SignTool
must:
1. For PE/COFF headers and sections, align them on the appropriate section align-

ment for the architecture, as stipulated in the SectionAlignment field of header.
Pad inter-section regions (that is, in case file alignment and section alignment
are not the same) with zeroes. Some sections, like debug and security may be
ignorable.

2. Skip the following fields in the calculation:
■ CheckSum
■ Certificate Data Directory (the fifth entry in data directory)

As SignTool’s input, the whole well-formatted executable is hashed and signed by
SignTool. The final signature is appended to the original executable file to generate a
signed executable file. Figure A.5 illustrates the layout of a signed executable.

  Appendix A: Security Considerations

Figure A.5: Layout of signed executable.

UEFI Load Image

During the processing of UEFI images, the UEFI driver verification is processed in the
UEFI implementation, such as a UEFI PI core. One of the UEFI core’s responsibilities
is to load UEFI executables into physical memory; it may utilize an instance of the
Security Architectural Protocol (SAP) to verify their signatures in order to ensure they
are not tampered with and that they come from an authorized source.

SignTool

SignTool is a command-line application that digitally signs a UEFI executable (.efi
file) and generates a signed executable (.signed). This section describes the com-
mand-line arguments, design, and their expected effect on the behavior of the utility.

Build Environment

SignTool is available from Microsoft.

 SignTool  

Example usage

An example usage of the tool is as follows:
SignTool sign /f EntityPrivateKey.pfx
ProduceApplication.efi

Where /f designates the local file with the private key and the final argument is the
UEFI executable to be signed.

For the Linux community, there are similar tools, such as Fedora’s pesign and
Jeremy Kerr’s sbsign based upon OpenSSL.

An example of the latter tool in action includes:
sbsign –key KEK.key –cert KEK.crt –output
ProductApplication-signed.efi ProductApplication.efi

where the key and certificate files can be generated by
openssl req -new -x509 -newkey rsa:2048 -keyout KEK.key -
out KEK.crt -days <length> -subj "/CN=<my common name>/"

and
openssl x509 -in KEK.crt -out KEK.cer -outform DER

respectively.

DOI 10.1515/9781501505751-013

Appendix B
Command Reference

This appendix enumerates the commands that are part of the UEFI Shell standard and
provide insight into what commands are associated with a given shell support level
and profile.

Command Profiles and Support Levels

The UEFI Shell has associated with it two concepts which assist the user or program
in determining what capabilities a given shell environment has. Since each shell im-
plementation allows for a vast amount of differentiation, the concepts of shell support
levels and shell profiles were introduced.
■ Shell Support Levels. The level associated with a given shell environment is dis-

covered by analyzing the shellsupport environment variable. This variable
reflects the current support level provided by the currently running shell envi-
ronment. Table B.1 shows a series of commands that correspond to a particular
shell level value.
– 0 – No commands built in. Only the APIs are available.
– 1 – Basic commands required to support scripting, such as if, exit, etc.
– 2 – Basic file system commands that do not require console output, such as

mkdir, cd, etc.
– 3 – Other basic commands that require console output.

■ Shell Profiles. Shell command profiles are groups of shell commands that are
identified by a profile name. The profile(s) supported by a given shell environ-
ment is derived by analyzing the profiles environment variable. Profile
names that begin with the underscore character (_) are reserved for individual
implementation.

Command List

Table B.1 provides a list of commands in the UEFI Shell standard. Note that some com-
mands are listed as 2/3. In this case the level 2 version allows the setting to be
changed, while the level 3 version allows the setting to be displayed and changed.

  Appendix B: Command Reference

Table B.1: Commands in the UEFI Shell Specification

Command Description Required at
Shell Level or
Profile

Alias Displays, creates, or deletes aliases in the UEFI Shell environ-
ment.



Attrib Displays or changes the attributes of files or directories. 
Bcfg Manipulates boot order and driver order. Debug, In-

stall
Cd Displays or changes the current directory. 
Cls Clears the standard output and optionally changes the back-

ground color.


Comp Compares the contents of two files on a byte-for-byte basis. Debug
Connect Binds a driver to a specific device and starts the driver. Driver
Cp Copies one or more source files or directories to a destina-

tion.
Driver

Date Displays and sets the current date for the system. /
Dblk Displays the contents of one or more blocks from a block de-

vice.
Debug

Del Deletes one or more files or directories. 
Devices Displays the list of devices managed by UEFI drivers. Driver
Devtree Displays the tree of devices compliant with the UEFI Driver

Model.
Driver

Dh Displays the device handles in the UEFI environment. Driver
Dir Lists directory contents or file information. 
Disconnect Disconnects one or more drivers from the specified devices. Driver
Dmem Displays the contents of system or device memory. Debug
Dmpstore Manages all UEFI variables. Debug
Drivers Displays a list of information for drivers that follow the UEFI

Driver Model.
Driver

Drvcfg Configures the driver using the UEFI Driver Configuration pro-
tocol.

Driver

Drvdiag Performs device diagnostics using the UEFI Driver Diagnostics
protocol.

Driver

Echo Controls whether or not script commands are displayed as
they are read from the script file and prints the given mes-
sage to the console.



Edit Full-screen editor for ASCII or UCS- (Unicode) files. Debug
eficompress Compresses a file using the UEFI Compression algorithm. Debug
efidecompress Decompresses a file using the UEFI Compression algorithm. Debug

 Command List  

Command Description Required at
Shell Level or
Profile

else Conditionally executes commands if a previous if command
condition was false. Only valid in scripts.



endfor Ends a loop started with a for command. Only valid in scripts. 
endif Ends a conditional block started with a previous if command.

Only valid in scripts.


exit Exits the UEFI Shell environment or the current UEFI Shell
script.



for Starts iterating over a block of script commands. The block is
terminated by a matching endfor command. Only valid in
scripts.



getmtc Returns the current UEFI monotonic count. 
goto Moves execution within the script to a specific label. Only

valid in scripts.


guid Displays all GUIDs registered with the UEFI Shell. Debug
help Displays a list of commands that are built into the UEFI Shell

and their usage.


hexedit Full-screen hex editor for files, block devices, or memory. Debug
if Starts a block of script commands that are executed only if

the condition specified evaluates to TRUE. Only valid in
scripts.



ifconfig Displays or modifies the current TCP/IP configuration for IPv. Network
ifconfig Display or modify the current TCP/IP configuration for IPv. Network
load Loads a UEFI driver into memory. 
loadpcirom Loads a UEFI driver from a binary file that is formatted as a

PCI Option ROM.
Debug

ls Lists a directory’s contents or file information. 
map Defines a mapping between a user-defined identifier and a

device handle.


mem Displays the contents of system or device memory. Debug
memmap Displays the memory map maintained by the UEFI environ-

ment.
Debug

mkdir Creates one or more new directories. 
mm Displays or modifies memory, memory-mapped I/O, I/O, PCI

configuration space, or PCI Express configuration space.
Debug

mode Displays or changes the console output device’s mode. Debug
mv Moves one or more files to a destination within a file system. 
openinfo Displays the protocols and agents associated with a UEFI

driver handle.
Driver

  Appendix B: Command Reference

Command Description Required at
Shell Level or
Profile

parse Parses the data returned from a UEFI Shell command as
standard formatted output. See “Standardizing Command
Output” (below) for more information.



pause Pauses script execution and waits for a keypress. 
pci Displays a list of PCI devices in the system and their PCI con-

figuration space.
Debug

ping Checks the response of a network IPv address. Network
ping Checks the response of a network IPv address. Network
reconnect Reconnects drivers to a specific device. Driver
reset Rests the system. 
rm Deletes one or more files or directories. 
sermode Sets the serial port attributes. Debug
set Displays or sets a UEFI Shell environment variable. 
setsize Changes the size of a file. Debug
setvar Displays, deletes, or updates the value of a UEFI variable. Debug
shift Shifts the contents of the script positional parameters by one.

Only valid in scripts.


smbiosview Display the system’s SMBIOS information. Debug
time Displays or sets the current system time. /
timezone Displays or sets the system time zone information. /
touch Updates the time and date of a file to the current time and

date.


type Sends the contents of a file to the console. 
unload Unloads a driver image that has already been loaded. Driver
ver Displays the version information of the UEFI environment. 
vol Changes/displays the volume label. 

Standardizing Command Output

One of the goals of the UEFI specifications is to clearly describe the required behavior
while leaving room for implementation-specific differentiation. Yet there was also a
strong desire to standardize the output of the shell commands so that tools and scripts
could operate consistently on the output of these commands.

The standard format output is available with many of the UEFI Shell commands
by specifying the –sfo command-line option. When this option is provided, all output
is produced to standard output in rows. Each row starts with an identifier (the “Table
Name”) that gives the type of data in the row, followed by zero or more columns. Each

 Command Details  

column is separated by a comma and contains a quoted string. Each column’s mean-
ing depends on the Table Name and the position of the column (1st, 2nd, 3rd, etc.). If
the Table Name starts with an underscore (_), it indicates that the contents of the row
are implementation-specific.

The parse shell command was designed to allow shell scripts to easily parse the
contents of standard format output, selecting specific table names, row instances and
column instances. For more information, see the parse UEFI Shell command de-
scription, below.

For example, for the standard format output for the “ls” command:
VolumeInfo,"MikesVolume","136314880","False","1024","512"
FileInfo,"fs0:/efi/boot/timsfile.txt","1250","a"

FileInfo,"fs0:/efi/boot/BOOTx64.EFI","1250","arsh"

Command Details

This section gives a brief overview of each command and its parameters. It is intended
as a quick reference for the purpose of understanding the basic command capabili-
ties. For full details on each of the commands, refer to the latest edition of the UEFI
Shell specification.

alias

This command displays, creates, or deletes aliases in the UEFI Shell environment. An
alias provides a new name for an existing UEFI Shell command or UEFI Shell appli-
cation. Once the alias is created, it can be used to run the command or launch the
UEFI Shell application.

The UEFI Shell specification defines several required aliases: dir for ls, del for
rm, copy for cp, mem for dmem/ and md for mkdir. These aliases cannot be deleted
or changed. In addition, the EDK2 implementation adds ren and move for mv,
mount for map/ and cat for type.
alias [-d|-v] [alias-name][command-name]

alias-name – Alias name.

command-name – Original command’s name or original UEFI Shell application’s
name and directory.

-d – Delete an alias. command-name must not be present.

  Appendix B: Command Reference

-v – Make the alias volatile. After exiting the UEFI Shell environment, the alias
definition will be lost.

attrib

This command displays and sets the attributes of files or directories. If no file or di-
rectory is specified, then all files in the current working directory are displayed. If no
change in attribute is specified, then all attributes will be displayed.

There are four attributes supported in the UEFI Simple File System: archive (a),
system (s), hidden (h) and read-only (r). Each attribute may be enabled or disabled
for a file. In addition, if a file is a directory, the ‘d’ attribute will be displayed, but
cannot be modified.
attrib [+a|-a][+r|-r][+s|-s][+h|-h] [file…|directory…]

+a|-a – Set or clear the archive attribute.

+r|-r – Set or clear the read-only attribute.

+s|-s – Set or clear the system attribute.

+h|-h – Set or clear the hidden attribute.

file… – File name. Wild cards are permitted.

directory… Directory name. Wild cards are permitted.

bcfg

This command manages the boot and driver options stored in UEFI variables, as de-
scribed in the UEFI specification.

The dump option displays the Boot#### or Driver#### variables. The add,
addp/ and addh options add a new Boot#### or Driver### variable. The mod,
modp/ modf, and modh options modify an existing Boot#### or Driver#### var-
iable. The rm option deletes a Boot#### or Driver#### variable.

The add, addp, addh, rm/ and mv options may also update the BootOrder or
DriverOrder variables as appropriate.

 Command Details  

The –opt option either updates the optional data in a Boot#### or
Driver#### variable or updates the hot key data associated with a Boot#### var-
iable in the corresponding Key#### variable.
bcfg driver|boot "dump" [-v]

bcfg driver|boot "add" option file "description"

bcfg driver|boot "addp" option file "description"

bcfg driver|boot "addh" option handle "description"

bcfg driver|boot mod option "description"

bcfg driver|boot modf option file

bcfg driver|boot modp option file

bcfg driver|boot modh option handle

bcfg rm option

bcfg mv option1 option2

bcfg –opt option filename

bcfg –opt option "data"

bcfg –opt key-data keys*

dump – Command that specifies that the option list specified by driver or boot will be
displayed. If –v is added, extra information will be displayed, including the optional
data.

add option file "description" – Add an option. The option is the option
number to add, in hexadecimal. The file name is the name of the UEFI driver or appli-
cation and will be added to the file system path. The quoted string is the user-readable
description of the option.

addh option handle "description" – Add an option. The option is the
option number to add, in hexadecimal. The handle is the driver or device handle (as
reported by the dh command), in hexadecimal. The device path for the option is re-
trieved from the Loaded Image protocol(s) associated with the handle. The quoted
string is the user-readable description of the option.

addp index file "description" – Add an option. The option is the option
number to add, in hexadecimal. The file is the name of the UEFI driver or application.
Only the portion of the device path starting with the hard drive partition is placed in
the option. The quoted string is the user-readable description of the option.

  Appendix B: Command Reference

mod – Modify description of an existing option. The option is the option number to
modify, in hexadecimal. The quoted string is the user-readable description of the op-
tion.

modf – Modify device path stored in an existing option, using a file name. The option
is the option number to modify, in hexadecimal. The file is the new file name of the
UEFI application/driver to store in the option.

modp – Modify device path stored in an existing option, using a file name. The option
is the option number to modify, in hexadecimal. The file is the new file name of the
UEFI application/driver, but only the portion of the device path starting with the hard
drive partition is stored in the option.

modh – Modify device path stored in an existing option, using a device handle. The
option is the option number to modify, in hexadecimal. The handle is the device han-
dle number (as listed by the dh command), in hexadecimal, and the device path of
this handle is stored in the option.

rm index – Remove an option. The option is the option number to remove, in hexa-
decimal. The entry in the boot or driver list (BootOrder/DriverOrder) will also be re-
moved.

mv option1 option2 – Move an option. The first option (option1) is the option
number to move. The second option (option2) is the new option number.

-opt – Display or modify the optional data associated with a boot option. It may be
followed either by a file name containing that data, a hexadecimal stream containing
the bytes of that data. This can also be the hot key data associated with the option.
This data is encoded as flags (EFI_KEY_DATA from the UEFI specification) and then
1 to 4 scan-code/Unicode pairs.

cd

This command changes the current working directory that is used by the UEFI Shell
environment. If no path is specified, then the current working directory for the current
file system is displayed. If a file system mapping is specified, then the current working
directory is changed for that device. Otherwise, the current working directory is
changed for the current device.

 Command Details  

Some pre-defined directory names are intended to have special meaning. These
are:
. Refers to the current directory.
.. Refers to the parent directory of the current directory.
\ Refers to the root of the current file system.

The current working directory is maintained in the environment variable cwd.
cd [path]

path – The relative or absolute directory path.

cls

This command clears the console and, optionally, clears it to a specific color. If the
color is not specified, then the background color does not change.
cls [background-color [foreground-color]|[-sfo]

background-color – New background color. Valid values are 0=Black, 1=Blue,
2=Green, 3=Cyan, 4=Red, 5=Magenta,6=Yellow,7=Light gray.

foreground-color – New foreground color. Valid values are 0=Black, 1=Blue,
2=Green, 3=Cyan, 4=Red, 5=Magenta,6=Yellow,7=Light gray.

-sfo – Console output is not cleared, but the information about the console is dis-
played in standard-format output. For more information on the format, see the UEFI
Shell specification.

comp

This command compares the contents of two files in binary mode to determine if they
are equal or not equal. It displays up to 10 differences between the two files. For each
difference, up to 32 bytes from the location where the difference starts is dumped. It
will exit immediately if the lengths of the compared files are different.
comp [-b] file1 file2 [-n count][-s size]

file1 – Specifies the first file name. Directory names or wildcards are not permitted.

  Appendix B: Command Reference

file2 – Specifies the second file name. Directory names or wildcards are not per-
mitted.

-b – Display one screen at a time

-n count – Unsigned integer that specifies the maximum number of differences to
display or else the keyword all that specifies that all differences should be displayed.
The default is 10.

-s size – Unsigned integer that specifies the number of bytes to display after find-
ing a difference. The default is 4.

connect

This command binds a driver to a specific device and starts the driver. If the –r flag is
used, then the connection is done recursively until no further connections between
devices and drivers are made. If the –c flag is used, then the connect command binds
the proper drivers to the console devices that are described in the UEFI variables.

If no parameters are specified, then the command will attempt to bind all proper
devices to all devices without recursion. Each connection status will be displayed.

If only a single handle is specified and the handle has the Driver Binding protocol
installed on it, it is assumed to be a driver handle. Otherwise, it is assumed to be a
device handle.
connect [[device-handle][driver-handle]] [–c] [-r]

-r – Recursively scan all handles and check to see if any loaded or embedded driver
can match the specified device. If so, the driver will be bound to the device. Addition-
ally, if more device handles are created during the binding, these handles will also be
checked to see if a matching driver can bind to these devices as well. The process is
repeated until no more drivers are able to be bound to any more devices. However,
without this option, the newly created device handles will not be further bound to
any drivers.

-c – Connect console devices as described in the UEFI variables.

device-handle – Device handle is a hexadecimal number (see dh) that specifies
the handle of the device to be connected.

driver-handle – Driver handle is a hexadecimal number (see dh) that specifies
the handle of the driver to be connected.

 Command Details  

cp/copy

This command copies one or more source files or directories to a destination. If the
source is a directory, the –r flag must be specified. If –r is specified, then the contents
of the source directory will be recursively copied to the destination (which means that
all subdirectories will be copied). If a destination is not specified, then the current
working directory is assumed to be the destination.

If the target file (not directory) already exists, then the user will be prompted to
confirm replacing the file, unless the –q option was specified.
If there are multiple source files, then the destination must be a directory.
When copying to another directory, that directory must exist.

cp [-r] [-q] src [src…][dst]

src – Source file or directory name. Wildcards are permitted.

dst – Destination file or directory name. Wildcards are not permitted. If not speci-
fied, then the current working directory is assumed to be the destination. If there is
more than one directory specified, then the last is always assumed to be the destina-
tion.

-r – Copy recursively.

-q – Quiet copy (no prompts). When executing a script, the default is quiet. Otherwise
the default is to prompt.

date

This command displays and/or sets the current system date. If no parameters are
used, it shows the current date. If a valid month, day, and year are provided, then the
system’s date will be updated.
date [mm/dd/[yy]yy] –sfo

mm – Month of the date to be set (1-12).

dd – Day of the date to be set (1-31).

yy/yyyy – Year of the date to be set. If only two digits, then 9x = 199x, otherwise
20xx.

  Appendix B: Command Reference

-sfo – Standard format output. See the UEFI Shell specification for details.

dblk

This command displays the contents of one or more blocks from a block device. The
logical block address (LBA) and block count should be specified as a hexadecimal
value. If the LBA is not specified, block 0 is assumed. If the block count is not speci-
fied, then 1 block is assumed. The maximum number of blocks that can be displayed
at one time is 16 (0x10).

If the block has the format of a Master Boot Record (MBR), then the partition in-
formation will be displayed. If the block has the format of a FAT partition, then some
FAT parameters will be displayed.
dblk device [lba][blocks][-b]

device – The mapping name of the block device.

lba – Index of the first block to be displayed, specified as a hexadecimal number.
The default is 0.

blocks – Number of blocks to be displayed, specified as a hexadecimal number. The
default is 0. If larger than 10 (16 decimal), then only 16 will be displayed.

-b – Display only one screen at a time.

del

Internal alias of the rm command.

devices

This command prints a list of devices that are being managed by drivers that follow
the UEFI Driver Model, as described in the UEFI specification.
devices [-b][-l lang][-sfo]

-b – Display one screen at a time.

-l lang – Dumps information using the language associated with the specified
language code, such as en-US (for English). These language codes are described in

 Command Details  

Appendix M of the UEFI Specification. If none is specified, then the current platform
language will be used.

-sfo – Display information as standard format output. See the UEFI Shell specifica-
tion for more details.

devtree

This command prints a tree of devices that are being managed by drivers that follow
the UEFI Driver Model. By default, the devices are printed using device names that
are retrieved from the UEFI Component Name protocol. If the option –d is specified,
then the device paths are printed instead.
devtree [-b][-d][-l lang][device-handle]

device-handle – Display device tree information for devices attached to the spec-
ified device. The handle is the same as reported by the dh command.

-b – Display one screen at a time.

-d – Display device information using device paths.

-l lang – Dumps information using the language associated with the specified
language code, such as en-US (for English). These language codes are described in
Appendix M of the UEFI Specification. If none is specified, then the current platform
language will be used.

dh

This command displays the device handles in the UEFI environment for those devices
managed according to the UEFI Driver Model. If the dh command is used with a spe-
cific handle, the details of all protocols that are associated with the device handle are
displayed. Otherwise, the –p option can be used to list the device handles that contain
a specific protocol. If neither –p nor handle is specified, then all device handles are
displayed.

If decode is specified, then only decode information is displayed. With no addi-
tional parameters, this command will display all possible identifiers and their associ-
ated GUID in alphabetical order. If -p is also used, then only decode information for
the specified protocol identifier is dumped. Decode information includes the full
GUID and the string representation that can be used instead.

  Appendix B: Command Reference

dh [-l lang][handle | -p protocol-id][-d][-v][-sfo]

dh decode –p protocol-id

handle – Specifies a device handle associated with the device about which infor-
mation should be displayed. The handle is a hexadecimal number. If not present,
then information about all devices will be displayed.

-p – Dumps all handles that support the specified protocols.

-d – Dumps UEFI Driver Model-related information.

-l lang – Dumps information using the language associated with the specified
language code, such as en-US (for English). These language codes are described in
Appendix M of the UEFI Specification. If none is specified, then the current platform
language will be used.

-v, -verbose – Dumps additional information about the handles.

-sfo – Displays information as standard format output, as described in the UEFI
Shell specification.

decode – Display decoded information about a protocol specified by either a GUID
or a protocol identifier.

dir/ls

Internal alias for the ls command.

disconnect

This command disconnects one or more drivers from the specified devices. If the –r
option is specified, all drivers are disconnected from all devices in the system. If the
–nc option is used along with the –r option, the console devices are not reconnected.
disconnect device-handle [driver-handle [child-handle]]

device-handle – The device handle, specified as a hexadecimal number. These
numbers are the same as those displayed by the dh command.

 Command Details  

driver-handle – The driver handle, specified as a hexadecimal number. These
numbers are the same as those displayed by the dh command.

child-handle – The child handle of a device, specified as a hexadecimal number.
If not specified, then all child handles of the device-handle will be disconnected.

-r – Disconnect all drivers from all devices.

-nc – Do not reconnect console devices.

dmem

This command displays the contents of system memory, I/O, PCI configuration space,
or device memory. The address and size are specified as hexadecimal numbers.

If the address is not specified, then the contents of the UEFI System Table are
displayed. Otherwise, the memory starting at the specified address is displayed. If
the size is not specified, then the default is 512 bytes.

If –MMIO, -IO, -PCI/ and –PCIE are not specified, then system memory is dis-
played. If –MMIO is specified, then memory-mapped I/O is displayed by using the PCI
Root Bridge I/O protocol. If –IO is specified, then I/O access are used. If –PCI is spec-
ified, then PCI configuration space accesses are used. If –PCIE is specified, then PCI
express configurations space accesses are used.
dmem [-b] [address [size]] [-MMIO|-IO|-PCI|-PCIE]

address – The starting address, in hexadecimal. The default is the address of the
UEFI System Table. For PCI and PCI Express, the format is ssssbbddffrrr, where ssss is
the segment number, bb is the bus number, dd is the device number, ff is the function
number and rrr is the register number.

size – The number of bytes to display, in hexadecimal. The default is 512.

-b – Display one screen at a time.

-MMIO – Forces address cycles to the PCI bus.

-IO – I/O access.

-PCI – PCI configuration space access.

-PCIE – PCI Express configuration space access.

  Appendix B: Command Reference

dmpstore

This command displays, deletes, saves, or loads the UEFI variable contents.
dmpstore [-b][-all | <var-name [-guid var-guid]>[-sfo]

dmpstore –d [-all | <var-name [-guid var-guid]>

dmpstore –s file [-all | <var-name [-guid var-guid]>

dmpstore –l file [-all | <var-name [-guid var-guid]>

-all – Indicates that all variables should be displayed, loaded, saved, or deleted.

var-name – Specifies the name of the UEFI variable. If a variable name is specified,
then only this variable will be displayed, deleted, loaded, or saved.

-guid var-guid – Specified the GUID of the UEFI variable. If not specified, then
the Global Variable GUID is assumed (as defined in the UEFI specification).

-d – Delete the variable(s) specified.

-l file – Load the variable contents from the specified file.

-s file – Save the variable contents to the specified file.

-sfo – Display as standard-format output, as described in the UEFI Shell specifica-
tion.

drivers

This command displays a list of information about drivers that follow the UEFI Driver
Model. This includes the handle of the UEFI driver, the version of the UEFI driver, the
driver type, the number of devices that the driver is managing, the number of child
devices this driver has created, the type of driver (bus, device, or other) the name of
the driver and the driver’s file path (if any).
drivers [-l lang][-sfo]

-l lang – Dumps information using the language associated with the specified
language code, such as en-US (for English). These language codes are described in
Appendix M of the UEFI Specification. If none is specified, then the current platform
language will be used.

 Command Details  

-sfo – Displays driver information as standard-format output. See the UEFI Shell
specification for more information.

drvcfg

This command invokes the platform’s configuration infrastructure to allow the device
to be configured.
drvcfg [-l lang][-c][-f type][-v|-s] [driver-handle [de-
vice-handle [child-handle]]] [-i file][-o file]

-f type – The type of defaults to set on the controller, specified as an unsigned
integer. 0 = standard, 1 = manufacturing, 2 = safe mode. Other values are driver-spe-
cific.

driver-handle – The handle of the driver to configure, specified as a hexadeci-
mal number. These numbers correspond to the numbers output by the dh command.

device-handle – The handle of the device to configure, specified as a hexadeci-
mal number. These numbers correspond to the numbers output by the dh command.

child-handle – The handle of the device that is a child of the device specified by
device-handle to configure, specified as a hexadecimal number. These numbers cor-
respond to the numbers output by the dh command.

-c – Configure all child devices.

-l lang – Dumps information using the language associated with the specified lan-
guage code, such as en-US (for English). These language codes are described in Ap-
pendix M of the UEFI Specification. If none is specified, then the current platform
language will be used.

-f – Force defaults.

-v – Validate options.

-s – Set options.

-i file – Receive configuration options from the specified file.

-o file – Export settings of the specified driver to the specified file.

  Appendix B: Command Reference

drvdiag

This command invokes the Driver Diagnostic protocol. If no handles are specified,
then all drivers that support this protocol will be listed.
drvdiag [-c][-l lang][-s|-e|-m] [driver-handle [device-
handle [child-handle]]]

driver-handle – The handle of the driver to diagnose, specified as a hexadecimal
number. These numbers correspond to the numbers output by the dh command.

device-handle – The handle of the device to diagnose, specified as a hexadeci-
mal number. These numbers correspond to the numbers output by the dh command.

child-handle – The handle of the device that is a child of the device specified by
device-handle to diagnose, specified as a hexadecimal number. These numbers cor-
respond to the numbers output by the dh command.

-c – Diagnose all child devices.

-s – Run diagnostics in standard mode.

-e – Run diagnostics in extended mode.

-m – Run diagnostics in manufacturing mode.

-l lang – Dumps information using the language associated with the specified
language code, such as en-US (for English). These language codes are described in
Appendix M of the UEFI Specification. If none is specified, then the current platform
language will be used.

echo

The first form of this command controls whether or not script commands are dis-
played as they are read from the script file. If no argument is given, the current “on”
or “off” status is displayed. The second form prints the given message to the display.
echo [-on|-off]

echo [message]

message – Message to display

 Command Details  

-on – Enables display when reading commands from script files

-off – Disables display when reading commands from script files

edit

This command allows a file to be edited using a full screen editor. The editor supports
both UCS-2 and ASCII file types. If no file is specified, then an empty file will be edited.
edit [file]

file – Name of file to be edited. If none is specified, then an empty file is created
with a default file name.

eficompress

This command is used to compress a file using EFI Compression Algorithm and write
the compressed form out to a new file.
eficompress infile outfile

infile – Filename for uncompressed input file

outfile – Filename for compressed output file

efidecompress

This command is used to decompress a file using the EFI Decompression Algorithm
and write the decompressed form out to a new file.
efidecompress infile outfile

infile – Filename for compressed input file

outfile – Filename for decompressed output file

exit

This command exits the UEFI Shell or, if /b is specified, the current script.

  Appendix B: Command Reference

exit [/b] [exit-code]

/b – Indicates that only the current UEFI Shell script should be terminated. Ignored
if not used within a script.

exit-code – If exiting a UEFI Shell script, the value placed into the environment
variable lasterror. If exiting an instance of the UEFI Shell, the value returned to
the caller. If not specified, then 0 is returned.

for

The for command executes one or more commands for each item in a set of items.
The set may be text strings or file names or a mixture of both, separated by spaces (if
not in quotation marks). If the length of an element in the set is between 0 and 256,
and if the string contains wildcards, the string is treated as a file name containing
wildcards, and will be expanded before command is executed.

If after expansion no such files are found, the literal string itself is kept. The in-
dexvar variable is any alphabet character from “a” to “z” or “A” to “Z”, and they are
case-sensitive. It should not be a digit (0–9) because %digit will be interpreted as a
positional argument on the command line that launches the script. The namespace
for index variables is separate from that for environment variables, so if indexvar
has the same name as an existing environment variable, the environment variable
will remain unchanged by the for loop.

Each command is executed once for each item in the set, with any occurrence of
%indexvar in the command replaced with the current item. In the second format of
for ... endfor statement, indexvar will be assigned a value from start to
end with an interval of step. start and end can be any integer whose length is
less than 7 digits excluding sign, and it can also be applied to step with one excep-
tion of zero. step is optional, if step is not specified it will be automatically deter-
mined by following rule, if start ≤ end then step = 1, otherwise step = –1.
start, end/ and step are divided by space.

This command may only be used in scripts.
This command does not change the value of the environment variable laster-

ror.
for %indexvar in set

 command [arguments]

 [command [arguments]]

 …

endfor

 Command Details  

for %indexvar run (start end [step])

 command [arguments]

 [command [arguments]]

 …

endfor

getmtc

This command displays the current monotonic counter value. The lower 32 bits incre-
ment every time this command is executed. Every time the system is reset, the upper
32 bits are incremented and the lower 32 bits are reset to 0.
getmtc

goto

This command directs script file execution to the line in the script file after the given
label. The command is not supported from the interactive shell. A label is a line be-
ginning with a colon (:). It can either appear after the goto command, or before the
goto command. The search for label is done forward in the script file, from the cur-
rent file position. If the end of the file is reached, the search resumes at the top of the
file and continues until label is found or the starting point is reached. If label is not
found, the script process terminates and an error message is displayed. If a label is
encountered but no goto command is executed, the label lines are ignored.

This command is only valid in script files.
goto label

help

The help command displays information about one or more shell commands. If no
other options are specified, each command is displayed along with a brief description
of its function.

If no other options are specified, then each command is displayed, along with a
brief description of its function. If –verbose is specified, then all help information
for the specified command is displayed. If –section is specified, only the help sec-
tion specified will be displayed. If –usage is specified, then the usage information
will be displayed.

  Appendix B: Command Reference

help [cmd | pattern | special] [-usage] [-verbose] [-sec-
tion sectionname][-b]

cmd – Command to display help about.

pattern – Pattern that describes the commands to be displayed.

special – Displays a list of the special characters used in the shell command line.

-usage – Display the usage information for the command. The same as specifying
–section:NAME and –section:SYNOPSIS

-section sectionname – Display the specified section of the help information.

hexedit

This command allows a file, block device, or memory region to be edited. The region
being edited is displayed as hexadecimal bytes, and the contents can be modified and
saved.
hexedit [[-f] filename| [-d diskname offset size] | [-m
address size]]

-f – Name of file to edit.

-d – Disk block to edit. The diskname specifies the name of disk to edit (for exam-
ple fs0). The offset specifies the starting block number (beginning from 0). The
size specifies the number of blocks to be edited.

-m – Memory region to edit. The address specifies the starting 32-bit memory ad-
dress (beginning from 0). The size specifies the size of the memory region to be ed-
ited in bytes.

if

The if command executes one or more commands before the else or endif com-
mands, if the specified condition is true; otherwise commands between else (if pre-
sent) and endif are executed.

 Command Details  

In the first usage of if, the exist condition is true when the file specified by
filename exists. The filename argument may include device and path infor-
mation. Also wildcard expansion is supported by this form. If more than one file
matches the wildcard pattern, the condition evaluates to TRUE.

In the second usage, the string1 == string2 condition is true if the two
strings are identical. Here the comparison can be case-sensitive or case-insensitive; it
depends on the optional switch /i. If /i is specified, it compares strings in the case-
insensitive manner; otherwise, it compares strings in the case-sensitive manner.

In the third usage, general purpose comparison is supported using expressions
optionally separated by and or or. Since < and > are used for redirection, the expres-
sions use common two character (FORTRAN) abbreviations for the operators (aug-
mented with unsigned equivalents).

By default, comparisons are done numerically if the strings on both sides of the
operator are numbers and in case-sensitive character sort order otherwise. Spaces
separate the operators from operands. The /s and /i switches apply to the entire
line and must appear at the start of the line (just after the if itself). When performing
comparisons, the Unicode Byte Ordering Character is ignored at the beginning of any
argument.

Conditional expressions are evaluated strictly from left to right. Complex condi-
tionals requiring precedence may be implemented as nested if commands.

The expressions in the third usage have the following syntax:
conditional-expression := expression | expression and ex-
pression | expression or expression

expression := expr | not expr

expr := item binop item | boolfunc(string)

item := mapfunc(string) | string

mapfunc := efierror | pierror | oemerror

boolfunc := isint | exists | available | profile

binop := gt | lt | eq | ne | ge | le | == | ugt | ult |
uge | ule

For the comparisons, the operators are defined as:

gt – greater than

ugt – unsigned Greater than

lt – less than

ult – unsigned Less than

  Appendix B: Command Reference

ge – greater than or equal

uge – unsigned greater than or equal

le – less than or equal

ule – unsigned less than or equal

ne – not equal

eq – equals (semantically equivalent to ==)

== – equals (semantically equivalent to eq)

The error mapping functions referenced in item are used to convert integers into UEFI,
PI, or OEM error codes, as defined by Appendix D of the UEFI specification. The fol-
lowing are the defined functions:
UefiError – Sets top nibble of parameter to 0100 binary (0x8)

PiError – Sets top nibble of parameter to 1010 binary (0xA)
OemError – Sets top nibble of parameter to 1100 binary (0xC)

For example, to check for write protect (UEFI error #8):
if %lasterror% == UefiError(8) then

The Boolean functions are defined as:

isint() – Evaluates to true if the parameter string that follows is a number (as
defined below) and false otherwise.

exists() – Evaluates to true if the file specified by string exists is in the current
working directory or false if not.

available() – Evaluates to true if the file specified by string is in the current
working directory or current path.

profile() – Determines whether the parameter string matches one of the profile
names in the profiles environment variable.

if [not] exist filename then

 command [arguments]

 Command Details  

 [command [arguments]]

 …

 [else

 command [arguments]

 [command [arguments]]

 …

]

 endif

if [/i] [not] string1 == string2 then

 command [arguments]

 [command [arguments]]

 …

 [else

 command [arguments]

 [command [arguments]]

 …

]

endif

if [/i][/s] conditional-expression then

 command [arguments]

 [command [arguments]]

 …

 [else

 command [arguments]

 [command [arguments]]

 …

]

 endif

conditional-expression – Conditional expression, as described in the sec-
tion “Expressions” below.

  Appendix B: Command Reference

/s – Forces string comparisons.

/i – Forces case-insensitive string comparisons.

ifconfig

This command is used to modify the default IP address for the UEFI IPv4 network
stack.
ifconfig –r [name]

ifconfig –l [name]

ifconfig –s name dhcp

ifconfig –s name static ip4 subnet-mask gateway-mask

ifconfig –s dns ip4 [,ip4…]

name – Adapter name, such as eth0

-l name – Lists the configuration for all or the specified interface.

-s name static ip4 subnet-mask gateway-mask – Use static IP4 ad-
dress configuration for all interfaces or the specified interface.

ip4 – IP4 address in four integer values (each between 0-255). i.e., 192.168.0.1

subnet-mask – Subnet mask in four integer values (each between 0-255), i.e.,
255.255.255.0

gateway-mask – Default gateway in four integer values (each between 0-255), such
as 192.168.0.1

-s name dhcp – Use DHCPv4 to request the IPv4 address configuration dynami-
cally for all interfaces or the specified interface.

-s name dns ip4[,ip4…] – Configure DNS server addresses for the specified
interface. IPs can be combined, separated by a space.

ifconfig6

This command is used to display or modify IPv6 configuration for network interface.
ifconfig6 -r [name]

 Command Details  

ifconfig6 -l [name]

ifconfig6 -s name dad number

ifconfig6 –s name auto

ifconfig6 –s man id mac

ifconfig6 –s man host ip6 gw ip6

ifconfig6 –s man dns ip6

-r name – Reconfigure all interfaces or the specified interface, and set automatic
policy. If the specified interface is already set to automatic, then refresh the IPv6 con-
figuration.

-l name – List the configuration of the specified interface or all interfaces.

-s name dad number – Set dad transmits count of the specified interface.

-s name auto – Set automatic policy of the specified interface.

-s name man id mac – Set alternative interface id of the specified interface. Must
under manual policy.

-s name man host ip6 gw ip6 – Set static host IP and gateway address of
the specified interface. Must under manual policy.

-s name man dns ip6 – Set DNS server IP addresses of the specified interface.
Must under manual policy.

load

This command loads a driver into memory. It can load multiple files at one time, and
the file name supports wildcards. If the -nc flag is not specified, this command will
try to connect the driver to a proper device; it may also cause already loaded drivers
to be connected to their corresponding devices.
load [-nc] file [file...]

-nc – Load the driver, but do not connect the driver.

file – File that contains the image of a UEFI driver. Wildcards are permitted.

  Appendix B: Command Reference

loadpcirom

This command is used to load PCI option ROM images into memory for execution. The
file can contain legacy images and multiple PE32 images, in which case all PE32 im-
ages will be loaded.
loadpcirom [-nc] romfile [romfile...]

-nc – Load the ROM image but do not connect the driver.

romfile – PCI option ROM image file (wildcards are permitted).

ls

This command lists directory contents or file information. If no file name or directory
name is specified, then the current working directory is assumed.

If no attribute is specified using the –ar/-ah/-as/-aa/-ad options, then all
non-system and non-hidden files will be displayed.
ls [-r][-ar][-ah][-as][-aa][-ad][-sfo][file]

-r – Displays directory contents recursively (including subdirectories).

-ar – Display only read-only files.

-ah – Display only hidden files.

-as – Display only system files.

-aa – Display only files that are marked for archival.

-ad – Display only directories.

-sfo – Display information as standard format output. See the UEFI Shell specifica-
tion for more details.

file – Name of the file or directory. Wildcards are permitted.

 Command Details  

map

This command creates a mapping between a user-defined name and a device. The
most common use of this command is to create the mapped name for devices that
support a file system protocol. Once these mappings are created, the names can be
used with all the file manipulation commands.

The UEFI Shell creates default mappings for all devices that support a file system.
This command can be used to create additional mappings, or it can be used to

delete an existing mapping with the –d option. If the command is used without any
options, then all of the current mappings will be displayed.

The –r option resets all of the default mappings for file systems know to the UEFI
environment. This option is useful if the configuration has changed since the last
boot.

The –u option adds mappings for newly installed devices and removes mappings
for uninstalled devices but will not change the mappings of existing devices. Any
user-defined mappings are also preserved. A mapping history will be saved so that
the original mapping name is used for a device with a specific device path if that map-
ping name was used for that device path last time. The current directory is also pre-
served if the current device is not changed.

The mapping consist of digits and characters. Other characters are illegal.
This command support wildcards. You can use the wildcards to delete or show

the mapping. However, when you assign the mapping, wildcards are forbidden.
map -d sname

map –r sname

map –v [sname]

map –f sname

map –u sname

map –t type,[,type…]sname

map sname [handle | mapname]

sname – Mapping name.

handle – The device handle, as displayed by the dh command, in hexadecimal.

mapping – The device’s mapped name. Use this parameter to assign a new mapping
to a device. The mapping must end with a “:” (colon).

-t – Shows the device mappings, filtered according to the device type. The supported
types are fp (floppy), hd (hard disk), and cd (CD-ROM). Types can be combined by
putting a comma between two types. Spaces are not allowed between types.

  Appendix B: Command Reference

-d – Deletes a mapping.

-r – Resets to default mappings.

-v – Lists verbose information about all mappings.

-c – Shows the consistent mapping.

-f – Shows the normal mapping.

-u – This option will add mappings for newly-installed devices and remove map-
pings for uninstalled devices but will not change the mappings of existing devices.
The user-defined mappings are also preserved.

-sfo – Display mappings as standard format output. See the UEFI Shell Specifica-
tion for details.

md

An internal alias for mkdir.

mem

An internal alias for dmem.

memmap

This command displays the memory map that is maintained by the UEFI environ-
ment. The UEFI environment keeps track all the physical memory in the system and
how it is currently being used. The UEFI Specification defines a set of Memory Type
Descriptors. Please see the UEFI Specification for a description of how each of these
memory types is used.
memmap [-b] [-sfo]

-b – Display one screen at a time.

 Command Details  

-sfo – Display output in standard format output. See the UEFI Shell Specification
for the latest details.

mkdir

This command creates one or more new directories. If the directory specified by dir
includes nested directories, then parent directories will be created before child direc-
tories. If the directory already exists, then the command will exit with an error.
mkdir dir [dir...]

dir – Name of directory or directories to be created. Wildcards are not permitted.

mm

This command allows the user to display or modify I/O register, memory contents, or
PCI configuration space.
mm address [value] [-w 1|2|4|8] [-MEM | -MMIO | -IO |
-PMEM | -PCI | -PCIE] [-n]

address – Starting address.

value – The value to write. If not specified, then the current value will be displayed.

-MEM – Memory Address type.

-IO – I/O Address type

-PCI – PCI Configuration Space. The address will have the format
0x000000ssbbddffrr, where ss = Segment, bb = Bus, dd = Device, ff = Func-
tion, and rr = Register. This is the same format used in the PCI command.

-PCIE – PCI Express Configuration Space. The address will have the format
0x0000000ssbbddffrrr, where ss = Segment, bb = Bus, dd = Device, ff =
Function, and rrr = Register.

-w – Access Width, in bytes. 1 = 1 byte, 2 = 2 bytes, 4 = 4 bytes, 8 = 8 bytes. If not
specified, then 1 is assumed.

-n – Non-interactive mode.

  Appendix B: Command Reference

mode

This command is used to change the display mode for the console output device.
When this command is used without any parameters, it shows the list of modes that
the standard output device currently supports.
mode [col row]

row – Number of rows.

col – Number of columns.

mv

This command moves one or more files to a destination within a file system .If the
destination is an existing directory, then the sources are moved into that directory.
Otherwise, the sources are moved into the directory as if the directory had been re-
named. If the destination is not specified, then the current working directory is as-
sumed.

Attempting to move a read-only file or directory generates an error. Moving a di-
rectory that contains read-only files is allowed. It is not allowed to move a directory
into itself or its subdirectories.
mv src [src...] [dst]

src – Source file/directory name (wildcards are permitted)

dst – Destination file/directory name (wildcards are permitted). If not specified, then
the current working directory is assumed to be the destination. If there is more than
one argument on the command line, the last one will always be considered the desti-
nation.

openinfo

This command is used to display the open protocols on a given handle.
openinfo handle [-b]

handle – Display open protocol information for a specified handle.

-b – Display one screen at a time.

 Command Details  

parse

This command enables the parsing of data from a file that contains data output from
a command having used the –sfo parameter. Since the standard formatted output
has a well-known means of parsing, this command is intended to be used as a simpli-
fied means of having scripts consume such constructed output files and use this re-
trieved data in logic of the scripts being written for the UEFI Shell.
parse filename tablename column [-i <instance>] [-s <in-
stance>]

filename – Source file name.

tablename – The name of the table being parsed.

column – The one-based column index to use to determine which value from a par-
ticular record to parse.

-i instance – Start parsing with the nth instance of specified tablename, after
the specified instance of ShellCommand. If not present, then all instances will be
returned.

-s <Instance> – Start parsing with the nth instance of the ShellCommand ta-
ble. If not present, then 1 is assumed.

pause

The pause command prints a message to the display and then suspends script file
execution and waits for keyboard input. Pressing any key resumes execution, except
for q or Q. If q or Q is pressed, script processing terminates; otherwise execution con-
tinues with the next line after the pause command.
pause [-q]

-q – Hide the pause message.

pci

This command will display all the PCI devices found in the system. It can also display
the configuration space of a PCI device according to specified bus (bus), device
(dev), and function (func) addresses. If the function address is not specified, it will

  Appendix B: Command Reference

default to 0. The –i option is used to display verbose information for the specified
PCI device. The PCI configuration space for the device will be dumped with a detailed
interpretation. If no parameters are specified, all PCI devices will be listed.
pci [bus dev [func] [-s seg] [-i] [-ec id]]

bus – Bus number (0-255).

dev – Device number (0-31).

func – Function number (0-7).

-s – Optional segment number (0-65,535).

-i – Display detailed interpretation of the PCI configuration space.

-ec – Display detailed interpretation of the specified PCIe extended capability, spec-
ified as a hexadecimal number.

ping

This command is used to ping a target machine with UEFI IPv4 network stack.
ping [-n count] [-l size] [-s ip4] target-ip

-n – Number of echo request datagram to be sent.

-l – Size of data buffer in echo request datagram.

-s – Specifies the source adapter as the IP address specified.

target-ip – IPv4 address of the target machine.

ping6

This command is used to ping a target machine with UEFI IPv6 network stack.
ping6 [-l size] [-n count] [-s ip6] target-ip

-l size – Send buffer size in bytes (default=16, min=16, max=32768).

-n count – Send request count (default=10, min=1, max=10000).

 Command Details  

-s ip6 – Source IPv6 address.

target-ip – Target IPv6 address.

reconnect

This command reconnects drivers to the specific device. It first disconnects the spec-
ified driver from the specified device and then connects the driver to the device recur-
sively. If the -r option is used, all drivers are reconnected to all devices. Any drivers
that are bound to any devices will be disconnected first and then connected recur-
sively. See the connect and disconnect commands for more details.
reconnect device-handle [driver-handle [child-handle]]

reconnect –r

device-handle – Device handle (a hexadecimal number).

driver-handle – Driver handle (a hexadecimal number). If not specified, all driv-
ers on the specified device will be reconnected.

child-handle – Child handle of device (a hexadecimal number). If not specified,
then all child handles of the specified device will be reconnected.

-r – Reconnect drivers to all devices.

reset

This command resets the system. The default is to perform a cold reset. If the reset
string is specified, then it is passed into the ResetSystem() function, so the sys-
tem can know the reason for the system reset.

If –fwui is specified and the system firmware supports it, on the next boot, the
boot process will enter the firmware’s user interface. If the system firmware does not
support booting to the firmware’s user interface, this command returns an error.
reset [-w [string]] [-fwui]

reset [-s [string]] [-fwui]

reset [-c [string]] [-fwui]

-s – Performs a shutdown.

  Appendix B: Command Reference

-w – Performs a warm boot.

-c – Performs a cold boot.

-fwui – Mark the OsIndications variable to indicate a request to reboot into the firm-
ware’s user interface.

rm

This command deletes one or more files or directories. If the target is a directory, it
deletes the directory, including all files and all subdirectories. It is not allowed to re-
direct to a file whose parent directory (or the file itself) is being deleted.

Removing a read-only file will result in an error. Removing a directory that con-
tains a read-only file will result in an error. If an error occurs, this command will exit
immediately and later files/directories will not be removed.
rm [-q] file/directory [file/directory…]

file – File name. Wildcards are permitted.

directory – Directory name. Wildcards are permitted.

-q – Quiet mode. In this mode, there are no prompts for a confirmation.

sermode

This command displays or sets baud rate, parity attribute, data bits, and stop bits of
serial ports. If no attributes are specified, then the current settings are displayed. If
no handle is specified, then all serial ports are displayed.
sermode [handle [baudrate parity databits stopbits]]

handle – Device handle for a serial port in hexadecimal. The dh command can be
used to retrieve the correct handle.

baudrate – Baud rate for specified serial port. The following values are supported:
50, 75, 110, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600 (default),
19200, 38400, 57600, 115200, 230400, and 460800. All other values will be converted
to the next highest setting.

 Command Details  

parity – Parity bit settings for specified serial port. Any one of the following set-
tings can be used:

d – Default parity
n – No parity
e – Even parity
o – Odd parity
m – Mark parity
s – Space parity

databits – Data bits for the specified serial port. The following settings are sup-
ported: 4, 7, 8 (default). All other settings are invalid.

stopbits – Stop bits for the specified serial port. The following settings are sup-
ported:

0 (0 stop bits – default setting)
1 (1 stop bit)
2 (2 stop bits)
15 (1.5 stop bits)

set

This command is used to create, delete, or change UEFI Shell environment variables.
The set command will set the environment variable that is specified by sname to
value. This command can be used to create a new environment variable or to modify
an existing environment variable. If the set command is used without any parame-
ters, then all the environment variables are displayed.

This command does not change the value of the environment variable lasterror.
set [-v] [sname [value]]

set [-d <sname>]

-d – Deletes the environment variable.

-v – Volatile variable.

sname – Environment variable name.

value – Environment variable value.

  Appendix B: Command Reference

setsize

This command adjusts the size of a particular target file. When adjusting the size of a
file, it should be noted that this command automatically truncates or extends the size
of a file based on the passed-in parameters. If the file does not exist, it will be created.
setsize size file [file...]

file – The file or files that will have their size adjusted.

size – The desired size of the file once it is adjusted. Setting the size smaller than
the actual data contained in this file truncates this data.

setvar

This command creates, deletes, or changes the UEFI variable specified by name and
guid. If = is specified, but data is not, the variable is deleted, if it exists. If = is not
specified, then the current variable contents are displayed. If =data is specified,
then the variable’s value is changed to the value specified by data.
setvar variable-name [–guid guid][-bs][-rs][-nv] [=data]

variable-name – Specifies the name of the UEFI variable to modify or display.

-guid – Specifies the GUID of the UEFI variable to modify or display. If not present,
then the GUID EFI_GLOBAL_VARIABLE is assumed, as defined in the UEFI speci-
fication.

-bs – Indicates that the variable is a boot variable. Should only be present for new
variables, otherwise it is ignored.

-rt – Indicates that the variable is a runtime variable. Should only be present for
new variables, otherwise it is ignored.

-nv – Indicates that the variable is nonvolatile. If not present, then the variable is
assumed to be volatile. Should only be present for new variables, otherwise it is ig-
nored.

=data – New data for the variable. If there is nothing after the “=” then the variable
is deleted. If = is not present, then the current value of the variable is dumped as hex-
adecimal bytes. The data may consist of zero or more of the following:

 Command Details  

xx[xx]: Hexadecimal bytes

"ascii-string" or S"ascii-string": ASCII string with no null-terminator

L"UCS2-string": UCS-2 encoded string with no null-terminator

-P"device-path" or --device: Device path text format, as specified by EFI De-
vice Path Display Format Overview section of the UEFI 2.1 specification.

shift

The shift command shifts the contents of a UEFI Shell script’s positional parame-
ters so that %1 is discarded, %2 is copied to %1, %3 is copied to %2, %4 is copied to
%3, and so on. This allows UEFI Shell scripts to process script parameters from left to
right. The shift command is available only in UEFI Shell scripts.
Shift

smbiosview

This command displays the SMBIOS information. Users can display the information
of SMBIOS structures specified by type or handle.
smbiosview [-t SmbiosType]|[-h SmbiosHandle]|[-s]|[-a]

-t – Display all structures of SmbiosType. The following values are supported:

0 – BIOS Information
1 – System Information
3 – System Enclosure
4 – Processor Information
5 – Memory Controller Information
6 – Memory Module Information
7 – Cache Information
8 – Port Connector Information
9 – System Slots
10 – On Board Devices Information
15 – System Event Log
16 – Physical Memory Array
17 – Memory Device
18 – 32-bit Memory Error Information

  Appendix B: Command Reference

19 – Memory Array Mapped Address
20 – Memory Device Mapped Address
21 – Built-in Pointing Device
22 – Portable Battery
34 – Management Device
37 – Memory Channel
38 – IPMI Device Information
39 – System Power Supply

-h – Display the structure of SmbiosHandle, the unique 16-bit value assigned to
each SMBIOS structure. SmbiosHandle can be specified in either decimal or hexa-
decimal format. Use the 0x prefix for hexadecimal values.

-s – Display statistics table.

-a – Display all information.

stall

This command is used to establish a timed stall of operations during a script.
stall time

time – The number of microseconds for the processor to stall.

time

This command displays or sets the current time for the system. If no parameters are
used, it shows the current time. If valid hours, minutes, and seconds are provided,
then the system’s time is updated.
time [hh:mm[:ss]] [-tz tz] [-d dl]

hh – New hour (0–23) (required).

mm – New minute (0–59) (required).

ss – New second (0–59). If not specified, then zero is used.

 Command Details  

-tz – Time zone adjustment, measured in minutes offset from GMT. Valid values can
be between −1440 and 1440 or 2047. If not present or set to 2047, time is interpreted
as local time.

-d – Indicates that time is not affected by daylight saving time (0), time is affected by
daylight saving time but time has not been adjusted (1), or time is affected by daylight
saving time and has been adjusted (3). All other values are invalid. If no value follows
–d, then the current daylight saving time is displayed.

time

This command displays and sets the current time zone for the system. If no parame-
ters are used, it shows the current time zone. If a valid hh:mm parameter is provided,
then the system’s time zone information is updated.
timezone [-s hh:mm | -l] [-b] [-f]

-s – Set time zone associated with hh:mm offset from GMT.

-l – Display list of all time zones.

-b – Display one screen at a time.

-f – Display full information for specified time zone.

touch

This command updates the time and date on the file that is specified by the file pa-
rameter to the current time and date.
touch [-r] file [file …]

file – The name or pattern of the file or directory. There can be multiple files on the
command line.

-r – Recurse into subdirectories.

  Appendix B: Command Reference

type

This command sends the contents of a file to the standard output device. If no options
are used, then the command attempts to automatically detect the file type. If it fails,
then UCS-2 is presumed.
type [-a|-u] file [file...]

file – Name of the file to display.

unload

This command unloads a driver image that was already loaded and that supports the
unloading option in the EFI_LOADED_IMAGE_PROTOCOL protocol.
unload [-n] [-v|-verbose] handle

-n – Skips all prompts during unloading, so that it can be used in a script file.

-v, -verbose – Dump verbose status information before the image is unloaded.

handle – Handle of driver to unload, always taken as hexadecimal number.

ver

This command displays the version information for this EFI Firmware or the version
information for the UEFI Shell itself. The information is retrieved through the UEFI
System Table or the Shell image.
ver [-s|-terse]

-s – Displays only the UEFI Shell version.

-terse – Abbreviated version display.

vol

This command displays the volume information for the file system specified by fs. If
fs is not specified, the current file system is used. If -n is specified, then the volume
label for fs will be set to VolumeLabel. The maximum length for VolumeLabel
is 11 characters.

 Command Details  

vol [fs]

vol [fs] -n volume-label

vol [fs] -d

fs – The name of the file system.

volume-label – The name of the file system. The following characters cannot be
used:

% ^ * + = [] | : ; “ < > ? /

No spaces are allowed in the volume label.

-d – Empty volume label.

DOI 10.1515/9781501505751-014

Appendix C
Programming Reference

This appendix gives guidance on the programming environment associated with the
UEFI Shell. The UEFI Shell provides programmatic interfaces that are not part of the
main UEFI specification. The data in this reference should provide some insight into
the programmatic interactions that are possible. This appendix is intended to be a
useful summary of the UEFI Shell programming environment. However, if more de-
tails are required, refer to the UEFI Shell Specification.

Script-based Programming

Even though Appendix B is really intended as the enumeration of all of the shell com-
mands that can be executed by a script, a few aspects of the scripting environment
require additional explanation beyond the descriptions of the commands themselves.
These topics include:
■ Parameter passing
■ Redirection and piping
■ Return codes
■ Environment variables

Parameter Passing

Positional parameters are the first ten arguments (%0–%9) passed from the command
line into a UEFI Shell script. The first parameter after the UEFI Shell script name be-
comes %1, the second %2, the third %3, and so on. The argument %0 is the full path
name of the script itself.

When executing the UEFI Shell script, the %n is replaced by the corresponding
argument on the command line that invoked the script. If a positional parameter is
referenced in the UEFI Shell script but that parameter was not present, then an empty
string is substituted.

When passing parameters to commands, the associated commands might at
times accept parameters with wildcards in them. The most common use of such wild-
cards is in reference to file names. The asterisk (*) and question mark (?) are often
used for filename expansion. The asterisk would be used in a case where one is
searching for 0 or more characters in a filename. For example, the reference to a file-
name of “*.*” would be one searching for any valid file names with any valid exten-
sion. This typically means “give me everything.” The question mark is intended to be
used when looking to match exactly one character in a given filename. An example

  Appendix C: Programming Reference

of this would be “?I?.TXT” where items that might match this sequence would be
JIM.TXT and KIM.TXT.

Redirection and Piping

Depending on the background of the reader, mixing the terms redirection and piping
may not seem natural. For purposes of this section, let us explicitly define the terms:
■ Redirection – The ability to redirect the output of an application or command to

a file or an environment variable. This also includes the ability to use the content
of a file or an environment variable as the standard input to an application or
command.

■ Command Piping – The ability to channel the output of an application or com-
mand and feed the data to the standard input of another program.

Redirection
When using output redirection, there are several options available for both the source
of the data as well as the output of the data. The command syntax for output redirec-
tion is:
■ Command [options] > Target – Redirect the output of a command to a target. This

will create a new Target and will overwrite any pre-existing item of the same
name.

■ Command [options] >> Target – Append the output of a command to the Target
location.

It should be noted that the aforementioned Target location can be either a traditional
file on some non-volatile media or it can be a volatile environment variable. The latter
is introduced to support the operation of scripting logic even in a read-only type of
environment. Table C.1 summarizes the redirection character sequences.

Table C.1: Output Redirection Support

 Unicode ASCII Unicode Variable ASCII Variable

Standard Output > >a >v >av
Standard Error > >a >v >av
Standard Output - Append >> >>a >>v >>av
Standard Error - Append >> >>a >>v >>av

 Script-based Programming  

When using input redirection, the content of a file or environment variable is read
and used as the standard input to an application or shell command. The command
syntax for input redirection is:
■ Command [options] < Source – Use the Source as the standard input for the

Command.

Table C.2 summarizes the input redirection character sequences.

Table C.2: Input Redirection Support

 Unicode ASCII Unicode Variable ASCII Variable

Sequence < <a <v <av

Command Piping
By using the pipe (|) character, a data channel is formed that takes the standard
Unicode output of a file and feeds the data as standard input to another program. The
format for this support is as follows:
■ Command [options] | Command

This capability is found in most modern shells and since many common utilities pre-
sume the use of pipe operations, this enables maximal environment compatibility for
those who port their favorite utilities to this environment. Table C.3 summarizes com-
mand piping support.

Table C.3: Command Piping Support

Character Sequence Description

| Pipe output of a command to another program in UCS- format.
|a Pipe output of a command to another program in ASCII format.

Return Codes

During the execution of most shell commands, a return status is given when that com-
mand completes execution. In the UEFI Shell specification, there is a SHELL_STA-
TUS set of return codes used by shell commands.

The lasterror shell variable allows scripts to test the results of the most recently
executed command using the if command. This variable is maintained by the shell,

  Appendix C: Programming Reference

is read-only, and cannot be modified by command set. An example of a script test-
ing to see if a command succeeded would be:
PROGRAM.EFI
if %lasterror% == 0 then goto success
echo PROGRAM.EFI had an error
:success
echo PROGRAM.EFI succeeded

Environment Variables

Environment variables are variables that can hold user-specified contents and can be
employed on the command line or in scripts. Each environment variable has a case-
sensitive name (a C-style identifier) and a string value. Environment variables can be
either volatile (they will lose their value on reset or power-off) or non-volatile (they
will maintain their value across reset or power-off).

Environment variables can be used on the command line by using %variable-
name% where variable-name is the environment variable’s name. Variable sub-
stitution is not recursive. Environment variables can also be retrieved by a UEFI Shell
command by using the GetEnv() function.

Environment variables can be displayed or changed using the set shell com-
mand. They can also be changed by a UEFI Shell command using the SetEnv()
function. Table C.4 lists the environment variables that have special meaning to the
UEFI Shell. Each variable is defined to be Volatile (V) or Non-volatile (NV) as well as
having Read-Only (RO) or Read-Write (RW) attributes associated with it:

Table C.4: Table C.4 Shell Environment Variables with Special Meaning

Variable V/NV
RO/RW

Description

Cwd V/RO The current working directory, including the current
working file system.

Lasterror V/RO Last returned error from a UEFI Shell command or batch
script

path

V/RW The UEFI Shell has a default volatile environment varia-
ble path, which contains the default path that UEFI Shell
will search if necessary. When the user wants to launch a
UEFI application, UEFI Shell will first try to search the
current directory if it exists, and then search the path list
sequentially. If the application is found in one of the

 Non-Script-based Programming  

Variable V/NV
RO/RW

Description

paths, it will stop searching and execute that applica-
tion. If the application is not found in all the paths, UEFI
Shell will report the application is not found.

Profiles NV/RO The list of UEFI Shell command profiles supported by the
shell. Each profile name may only contain alphanumeric
characters or the “_” character. Profile names are semi-
colon (“;”) delimited.

Shellsupport V/RO Reflects the current support level enabled by the cur-
rently running shell environment. The contents of the
variable will reflect the text-based numeric version in the
form that looks like:

This variable is produced by the shell itself and is in-
tended as read-only, any attempt to modify the contents
will be ignored.

uefishellversion V/RO Reflects the revision of the UEFI Shell specification that
the shell supports. The contents are formatted as text:
.

Uefiversion V/RO Reflects the revision of the UEFI specification which the
underlying firmware supports. The contents will look like
this:
.

Non-Script-based Programming

While the users of shell environments may often focus on the shell commands and
scripts, a wide variety of programmatic interfaces are available in the shell environ-
ment. In most cases, this kind of infrastructure comes into play when a user wants to
create a shell extension (such as a new shell command). One should realize that the
UEFI Shell environment is provided by a UEFI application that complies with the UEFI
specification. This means that the return codes and underlying system services are at
least partially composed of UEFI service calls and conventions. There are, however,
two main protocols (programmatic services) that are introduced by the UEFI Shell en-
vironment:
■ Shell Protocol
■ Shell Parameters Protocol

  Appendix C: Programming Reference

Shell Protocol

Table C.5 summarizes the functions of the EFI_SHELL_PROTOCOL whose purpose
is to provide shell services to UEFI applications. This protocol is the workhorse of the
UEFI Shell environment and is used to provide abstractions to services that facilitate
the interaction with the underlying UEFI services as well as shell features.

Table C.5: Shell Protocol Functions

Function Description

BatchIsActive This function tells whether any script files are cur-
rently being processed.

CloseFile This function closes a specified file handle. All
“dirty” cached file data is flushed to the device, and
the file is closed. In all cases the handle is closed.

CreateFile This function creates an empty new file or directory
with the specified attributes and returns the new
file’s handle.

DeleteFile This function closes and deletes a file. In all cases
the file handle is closed.

DeleteFileByName This function deletes the file specified by the file
handle.

DisablePageBreak This function disables the page break output mode.
EnablePageBreak This function enables the page break output mode.
Execute This function creates a nested instance of the shell

and executes the specified command with the speci-
fied environment.

FindFiles This function searches for all files and directories
that match the specified file pattern. The file pattern
can contain wild-card characters.

FindFilesInDir This function returns all files in a specified directory.
FlushFile This function flushes all modified data associated

with a file to a device.
FreeFileList This function cleans up the file list and any related

data structures. It has no impact on the files them-
selves.

GetCurDir This function returns the current directory on a de-
vice.

GetDeviceName This function gets the user-readable name of the de-
vice specified by the device handle.

GetDevicePathFromFilePath This function gets the device path associated with a
mapping.

 Non-Script-based Programming  

Function Description

GetDevicePathFromMap This function converts a file system style name to a
device path, by replacing any mapping references to
the associated device path.

GetEnv This function returns the current value of the speci-
fied environment variable.

GetFileInfo This function allocates a buffer to store the file’s in-
formation. It’s the caller’s responsibility to free the
buffer.

GetFilePathFromDevicePath This function converts a device path to a file system
path by replacing part, or all, of the device path with
the file-system mapping.

GetFilePosition This function returns the current file position for the
file handle.

GetFileSize This function returns the size of the specified file.
GetHelpText This function returns the help information for the

specified command.
GetMapFromDevicePath This function returns the mapping which corre-

sponds to a particular device path.
GetPageBreak User can use this function to determine current page

break mode.
IsRootShell This function informs the user whether the active

shell is the root shell.
OpenFileByName This function opens the specified file and returns a

file handle.
OpenFileList This function opens the files that match the path pat-

tern specified.
OpenRoot This function opens the root directory of a device and

returns a file handle to it.
OpenRootByHandle This function returns the root directory of a file sys-

tem on a particular handle.
ReadFile This function reads the requested number of bytes

from the file at the file’s current position and returns
them in a buffer.

RemoveDupInFileList This function deletes the duplicate files in the given
file list.

SetAlias This function adds or removes the alias for a specific
shell command.

SetCurDir This function changes the current directory on a de-
vice.

SetEnv This function changes the current value of the speci-
fied environment variable.

  Appendix C: Programming Reference

Function Description

SetFileInfo This function sets the file information of an opened
file handle.

SetFilePosition This function sets the current read/write file position
for the handle to the position supplied.

SetMap This function creates, updates, or deletes a mapping
between a device and a device path.

WriteFile This function writes the specified number of bytes to
the file at the current file position. The current file
position is also advanced by the actual number of
bytes written.

ExecutionBreak Event signaled by the UEFI Shell when the user
presses Ctrl-C to indicate that the current UEFI Shell
command execution should be interrupted.

MajorVersion The major version of the shell environment.
MinorVersion The minor version of the shell environment.

Shell Parameters Protocol

Table C.6 summarizes the functions of the EFI_SHELL_PARAMETERS_PROTOCOL
whose purpose is to handle the shell application’s arguments. This protocol handles
state information associated with the command line as well as the current input, out-
put, and error consoles.

Table C.6: Shell Parameters Protocol Functions

Parameter Description

Argv Points to an Argc-element array of points to null-terminated strings containing the
command-line parameters. The first entry in the array is always the full file path of the
executable. Any quotation marks that were used to preserve whitespace have been
removed.

Argc The number of elements in the Argv array.
StdIn The file handle for the standard input for this executable. This may be different from

the ConInHandle in the EFI SYSTEM TABLE.
StdOut The file handle for the standard output for this executable. This may be different from

the ConOutHandle in the EFI SYSTEM TABLE.
StdErr The file handle for the standard error output for this executable. This may be different

from the StdErrHandle in the EFI_SYSTEM_TABLE.

DOI 10.1515/9781501505751-015

Appendix D
UEFI Shell Library

This appendix provides an annotated reference for the standard macros, functions,
and data structures in the UEFI Shell Library. This library is designed to provide a
broad range of services for using the UEFI and UEFI Shell APIs, in addition to common
functions related to strings, files, and so on.

Functions

This section describes all of the functions in the UEFI Shell Developer Kit Shell library.

File I/O Functions

The UEFI Shell Library provides a set of functions that operate on file I/O. Table D.1
lists the file I/O support functions that are described in the following sections. For
more information about EFI_FILE_INFO and EFI_FILE please refer to the UEFI
specification.

Table D.1: File I/O Functions

Function Name Function Description

ShellCloseFile Closes the file handle.
ShellCloseFileMetaArg Closes the files that were previously opened us-

ing ShellOpenFileMetaArg.
ShellCreateDirectory Creates a directory by the directory name.
ShellDeleteFile Closes and deletes the file handle.
ShellDeleteFileByName Deletes a file by name.
ShellFileExists Determines if a given file name exists.
ShellFileHandleReadLine Reads a single line of text from a handle into an

existing buffer, excluding the terminating \n
character, and return whether it was ASCII or
Unicode.

ShellFileHandleReturnLine Reads a single line of text from a handle into an
allocated buffer, excluding the terminating \n
character and return whether it was ASCII or
Unicode.

  Appendix D: UEFI Shell Library

Function Name Function Description

ShellFindFilePath Find a file by searching the current working di-
rectory and then the path environment variable.

ShellFindFilePathEx Find a file by searching the current working di-
rectory and then the path environment variable,
using zero or more alternate file extensions.

ShellFindFirstFile Gets the first file in a directory.
ShellFindNextFile Gets the next file in a directory.
ShellFlushFile Flushes data back to the file handle.
ShellGetFileInfo Gets the file information from an open file han-

dle and stores it in a buffer allocated from pool.
ShellGetFileSize Gets the size of a file.
ShellGetFilePosition Gets a file’s current position.
ShellIsDirectory Returns whether the specified file path is a di-

rectory.
ShellIsFile Returns whether the specified file path repre-

sents a file.
ShellIsFileInPath Returns whether the specified file is in the cur-

rent working directory or the path.
ShellOpenFile Opens a file.
ShellOpenFileByName Opens a file specified by a file name.
ShellOpenFileByDevicePath Opens a file specified by a device path.
ShellOpenFileMetaArg Open files based on a file name that may con-

tain wildcards.
ShellSetFileInfo Sets the file information to an open file handle.
ShellSetFilePosition Sets a file’s current position.
ShellReadFile Reads data from the file.
ShellWriteFile Writes data to the file.

Miscellaneous Functions

The UEFI Shell Library also provides a number of additional functions that abstract
the UEFI Shell protocol.

 Functions  

Tabble D.2: Miscellaneous Functions

Function Name Function Description

ShellExecute Parse and execute a command line.
ShellGetCurrentDir Return the current working directory for the

currently selected file system or the specified
file system.

ShellGetExecutionBreakFlag Returns whether Ctrl-C has been pressed by
the user.

ShellGetEnvironmentVariable Returns the value of the specified environment
variable.

ShellInitialize Initializes the shell library. Normally only used
by the shell itself.

ShellSetEnvironmentVariable Changes the value of the specified environ-
ment variable.

ShellSetPageBreakMode Sets (enables or disables) the page break
mode.

Command Line Parsing

The command-line parsing functions find and validate command-line options.

Table D.3: Command-Line Parsing Functions

Function Name Function Description

ShellCommandLineCheckDuplicate Detect if a command-line argument oc-
curred more than once on the command-
line.

ShellCommandLineFreeVarList Cleans up the command-line arguments
returned from the command-line parsing
functions.

ShellCommandLineGetCount Return the number of command-line pa-
rameters that were passed, excluding
flags.

ShellCommandLineGetFlag Checks the parsed command-line options
for a specific flag.

ShellCommandLineGetValue Return the value associated with a specific
flag.

ShellCommandLineGetRawValue Return the raw value associated with the
specific flag.

  Appendix D: UEFI Shell Library

Function Name Function Description

ShellCommandLineParseEx Checks the command-line arguments
passed in against the list of valid ones.
Adds more flexibility for numeric argu-
ments.

ShellCommandLineParse Checks the command-line arguments
passed in against the list of valid ones.

Text I/O

The text I/O functions display text on the console as well as taking certain types of
user input.

Table D.4: Text I/O Functions

Function Name Function Description

ShellPrintEx Print a printf-style string at the specified row
and column using a Unicode format string.

ShellPrintHelp Prints the specified section of the help file con-
tent for a specific command.

ShellPrintHiiEx Print a printf-style string at the specified row
and column using a string from the HII database.

ShellPromptForResponse Prompt the user and return the resulting answer.
ShellPromptForResponseHii Prompt the user and return the resulting answer,

using a string from the HII database.

String Functions

Table D.5 lists the support functions for handling strings. These are in addition to
those already found in the UEFI libraries.

 Functions  

Table D.5: String Functions

Function Name Function Description

ShellCopySearchAndReplace Replace each instance of one
string with another.

ShellConvertStringToUint64 Convert a string to a -bit un-
signed integer or else return an er-
ror.

ShellHexStrToUintn Converts a string to an unsigned
integer. Supports hexadecimal
only.

ShellIsDecimalDigitCharacter Returns whether the character is -
.

ShellIsHexaDecimalDigitCharacter Returns whether the character is -
, a-f or A-F or not.

ShellIsHexOrDecimalNumber Returns whether an entire string is
a valid number.

ShellStrToUintn Converts the string to an unsigned
integer. Supports decimal and hex-
adecimal (starting with x)

StrnCatGrow Safely append with automatic
string resizing given the length of
the destination and the desired
number of characters from the
source.

ShellCloseFile()

This function closes a specified file handle. All “dirty” cached file data is flushed to
the device and the file is closed. In all cases the handle is closed.

Prototype
EFI_STATUS
EFIAPI
ShellCloseFile (
 IN SHELL_FILE_HANDLE *FileHandle
);

Parameters
FileHandle – Pointer to the file handle to be closed.

  Appendix D: UEFI Shell Library

Status Codes Returned
EFI_SUCCESS – The file was closed successfully.

EFI_INVALID_PARAMETER – The file handle was invalid.

ShellCloseFileMetaArg()

This function closes all of the files and frees the list of files returned from ShellO-
penFileMetaArg().

Prototype
EFI_STATUS
EFIAPI
ShellCloseFileMetaArg (
 IN OUT EFI_SHELL_FILE_INFO **ListHead
);

Parameters
ListHead – The pointer to the head of the list of files to free.

Status Codes Returned
EFI_SUCCESS – The operation was successful.

EFI_INVALID_PARAMETER – The list or entry in the list was invalid.

ShellCommandLineCheckDuplicate()

Determine if a parameter is duplicated and, if so, return its value.

Prototype
EFI_STATUS
EFIAPI
ShellCommandLineCheckDuplicate (
 IN CONST LIST_ENTRY *CheckPackage,
 OUT CHAR16 **Param
);

 Functions  

Parameters
CheckPackage – The list of command-line arguments to free.

Param – Pointer to a pointer to the returned parameter value, if a duplicate was
found.

Status Codes Returned
EFI_SUCCESS – No parameters were duplicated.

EFI_DEVICE_ERROR – A duplicate was found and Param points to the pointer to
the value.

ShellCommandLineFreeVarList()

Free the list of command-line arguments found by ShellCommandLinePar-
seEx().

Prototype
VOID
EFIAPI
ShellCommandLineFreeVarList (
 IN LIST_ENTRY *CheckPackage
);

Parameters
CheckPackage – The list of command-line arguments to free.

Status Codes Returned
None

ShellCommandLineGetCount()

Returns the number of arguments on the command-line, excluding any flags.

Prototype
UINTN
EFIAPI
ShellCommandLineGetCount(

  Appendix D: UEFI Shell Library

 IN CONST LIST_ENTRY *CheckPackage
);

Parameters
CheckPackage – List of parsed command-line arguments.

Return Values
Unsigned integer that indicates the number of arguments, or -1 if no parsing has oc-
curred.

ShellCommandLineGetFlag()

Check for the presence of a flag parameter. Flag parameters are in the form “-<key>”
or “/<key>” but do not have a value after the flag.

Prototype
BOOLEAN
EFIAPI
ShellCommandLineGetFlag (
 IN CONST LIST_ENTRY * CONST CheckPackage,
 IN CONST CHAR16 * CONST KeyString
);

Parameters
CheckPackage – List of parsed command-line arguments.

KeyString – Pointer to null-terminated string that specifies the key.

Return Values
TRUE – The flag is present on the command line.

FALSE – The flag is not present on the command line.

ShellCommandLineGetValue()

Returns the value associated with the specified key on the command line, if any.
Value parameters are in the form “-<key> value” or “/<key> value”

 Functions  

Prototype
CONST CHAR16*
EFIAPI
ShellCommandLineGetValue (
 IN CONST LIST_ENTRY *CheckPackage,
 IN CHAR16 *KeyString
);

Parameters
CheckPackage – List of parsed command-line arguments.

KeyString – Pointer to null-terminated string that specifies the key.

Return Values
The pointer to a null-terminated string that contains the value associated with the
key, or else NULL if the key is not present.

ShellCommandLineGetRawValue()

Returns the raw value at a specific position in the list of parsed command-line argu-
ments. This is different from ShellCommandLineGetFlag() or ShellCom-
mandLineGetValue() because, instead of specifying the key, this specifies the ex-
act position.

Prototype
CONST CHAR16*
EFIAPI
ShellCommandLineGetRawValue (
 IN CONST LIST_ENTRY * CONST CheckPackage,
 IN UINTN Position
);

Parameters
CheckPackage – List of parsed command-line arguments.

Position – Unsigned integer that specifies the index of the argument to retrieve
from the list.

Return Values
The pointer to the command-line argument or else NULL if no such argument exists.

  Appendix D: UEFI Shell Library

ShellCommandLineParseEx()

Check the command-line arguments against the list of valid ones and return the re-
sults in the list.

 Note: The library header file also provides the macro “ShellCommandLineParse” which is
equivalent to this function, but with the AlwaysAllowNumbers parameter set to FALSE.

Prototype
EFI_STATUS
EFIAPI
ShellCommandLineParseEx (
 IN CONST SHELL_PARAM_ITEM *CheckList,
 OUT LIST_ENTRY **CheckPackage,
 OUT CHAR16 **ProblemParam OPTIONAL,
 IN BOOLEAN AutoPageBreak,
 IN BOOLEAN AlwaysAllowNumbers
);

Parameters
CheckList – The pointer to list of parameters to check. See Shell Parameters in
“Data Structures.”

CheckPackage – The returned list of checked values.

ProblemParam – Optional pointer to pointer to string that returns the parameter
that caused failure.

AutoPageBreak – Will automatically set page break to enabled.

AlwaysAllowNumbers – Will never fail for number based flags.

Status Codes Returned
EFI_SUCCESS – The operation completed successfully.

EFI_OUT_OF_RESOURCES – A memory allocation failed.

EFI_INVALID_PARAMETER – A parameter was invalid.

EFI_VOLUME_CORRUPTED – The command line was corrupt.

 Functions  

EFI_DEVICE_ERROR – The commands contained 2 opposing arguments. One of
the command line arguments was returned in ProblemParam if provided.

EFI_NOT_FOUND – An argument required a value that was missing. The invalid
command line argument was returned in ProblemParam if provided.

ShellCopySearchAndReplace()

This function finds zero or more instances of a string in another string and replaces
it. Upon successful return the NewString is a copy of SourceString with each
instance of FindTarget replaced with ReplaceWith.

Prototype
EFI_STATUS
EFIAPI
ShellCopySearchAndReplace(
 IN CHAR16 CONST *SourceString,
 IN OUT CHAR16 *NewString,
 IN UINTN NewSize,
 IN CONST CHAR16 *FindTarget,
 IN CONST CHAR16 *ReplaceWith,
 IN CONST BOOLEAN SkipPreCarrot,
 IN CONST BOOLEAN ParameterReplacing
);

Parameters
SourceString – The string with source buffer.

NewString – The string with resultant buffer.

NewSize – The size in bytes of NewString.

FindTarget – The string to look for.

ReplaceWith – The string to replace FindTarget with.

SkipPreCarrot – If TRUE will skip a FindTarget that has a '^'immediately be-
fore it.

ParameterReplacing – If TRUE will add "" around items with spaces.

  Appendix D: UEFI Shell Library

Status Codes Returned
EFI_SUCCESS – The string was successfully copied with replacement.

EFI_INVALID_PARAMETER – SourceString was NULL, or NewString was
NULL, or FindTarget was NULL, or ReplaceWith was NULL, or FindTarget
had length < 1, or SourceString had length < 1.

EFI_BUFFER_TOO_SMALL – NewSize was less than the minimum size to hold the
new string (truncation occurred).

ShellConvertStringToUint64()

This function verifies and converts a string to its numerical 64 bit representation. For
hexadecimal, it must be preceded with a 0x, 0X, or ForceHex must be set to TRUE.

Prototype
EFI_STATUS
EFIAPI
ShellConvertStringToUint64(
 IN CONST CHAR16 *String,
 OUT UINT64 *Value,
 IN CONST BOOLEAN ForceHex,
 IN CONST BOOLEAN StopAtSpace
);

Parameters
String – The string to evaluate.

Value – Upon a successful return, the value of the conversion.

ForceHex – Boolean that specifies whether the String will be assumed to be all hex-
adecimal characters (TRUE) or the radix will be auto-detected (FALSE).

StopAtSpace – Boolean that specifies whether to halt upon finding a space (TRUE)
or process the entire String (FALSE).

Status Codes Returned
EFI_SUCCESS – The conversion was successful.

EFI_INVALID_PARAMETER – String contained an invalid character.

 Functions  

EFI_NOT_FOUND – String was a number, but Value was NULL.

ShellCreateDirectory()

This function creates a directory of the directory names. If return is EFI_SUCCESS,
the FileHandle is the directory’s handle; otherwise, the FileHandle is NULL.
If the file already exists, this function opens the existing directory.

Prototype
EFI_STATUS
EFIAPI
ShellCreateDirectory(
 IN CHAR16 *DirName,
 OUT SHELL_FILE_HANDLE *FileHandle
);

Parameters
DirName – A pointer to the directory name.

FileHandle – A pointer to the opened directory handle.

Status Codes Returned
EFI_SUCCESS – The file was opened.

EFI_INVALID_PARAMETER – One of the parameters has an invalid value.

EFI_UNSUPPORTED – The file path could not be opened.

EFI_NOT_FOUND – The specified file could not be found on the device or the file
system could not be found on the device.

EFI_NO_MEDIA – The device has no media.

EFI_MEDIA_CHANGED – The device has a different medium in it or the medium is
no longer supported.

EFI_DEVICE_ERROR – The device reported an error.

EFI_VOLUME_CORRUPTED – The file system structures are corrupted.

  Appendix D: UEFI Shell Library

EFI_WRITE_PROTECTED – The file or medium is write protected.

EFI_ACCESS_DENIED – The file was read-only.

EFI_OUT_OF_RESOURCES – Not enough resources were available to open the file.

EFI_VOLUME_FULL – The volume is full.

ShellDeleteFile()

This function closes and deletes a file. In all cases, the file handle is closed. If the file
cannot be deleted, the warning code EFI_WARN_DELETE_FAILURE is returned,
but the handle is still closed.

Prototype
EFI_STATUS
EFIAPI
ShellDeleteFile (
 IN SHELL_FILE_HANDLE *FileHandle
);

Parameters
FileHandle – Pointer to the file handle to delete.

Status Codes Returned
EFI_SUCCESS – The file was closed and deleted, and the handle was closed.

EFI_WARN_DELETE_FAILURE – The handle was closed but the file was not de-
leted.

EFI_INVALID_PARAMETER – The file handle is invalid.

ShellDeleteFileByName()

This function deletes the file specified by the file name.

 Functions  

Prototype
EFI_STATUS
EFIAPI
ShellDeleteFileByName(
 IN CONST CHAR16 *FileName
);

Parameters
FileName – Pointer to a null-terminated string that specifies the file name to delete.

Status Codes Returned
EFI_SUCCESS – The file was deleted successfully.

EFI_WARN_DELETE_FAILURE – The handle was closed, but the file was not de-
leted.

EFI_INVALID_PARAMETER – One of the parameters has an invalid value.

EFI_NOT_FOUND – The specified file could not be found on the device or the file
system could not be found on the device.

EFI_NO_MEDIA – The device has no medium.

EFI_MEDIA_CHANGED – The device has a different medium in it or the medium is
no longer supported.

EFI_DEVICE_ERROR – The device reported an error.

EFI_VOLUME_CORRUPTED – The file system structures are corrupted.

EFI_WRITE_PROTECTED – The file or medium is write-protected.

EFI_ACCESS_DENIED – The file was opened read-only.

EFI_OUT_OF_RESOURCES – Not enough resources were available to open the file.

ShellExecute()

This function causes the shell to parse and execute the command line. It creates a
nested instance of the shell and executes the specified command (CommandLine)

  Appendix D: UEFI Shell Library

with the specified environment (Environment). Upon return, the status code re-
turned by the specified command is placed in StatusCode.

If Environment is NULL, then the current environment is used and all changes
made by the commands executed will be reflected in the current environment. If the
Environment is non-NULL, then the changes made will be discarded.

The CommandLine is executed from the current working directory on the cur-
rent device.

Prototype
EFI_STATUS
EFIAPI
ShellExecute (
 IN EFI_HANDLE ImageHandle,
 IN CHAR16 *CmdLine,
 IN BOOLEAN Output
 IN CHAR16 **EnvironmentVariables OPTIONAL,
 OUT EFI_STATUS *Status
);

Parameters
ImageHandle – A handle of an image that is initializing the library.

CmdLine – Command line.

Output – Boolean that specifies whether the output will be displayed (TRUE) or not
displayed (FALSE).

EnvironmentVariables – Optional pointer to an array of environment variables
in the form “x=y”. If NULL, then the current set of environment variables are used.

Status – On return, points to the status returned by the executed command.

Status Codes Returned
EFI_SUCCESS – The command executed successfully. Status holds the returned
status.

EFI_INVALID_PARAMETER – The parameters are invalid.

EFI_OUT_OF_RESOURCES – Out of resources.

EFI_UNSUPPORTED – The operation is not allowed.

 Functions  

ShellFileExists()

This function determines if a file exists.

Prototype
EFI_STATUS
EFIAPI
ShellFileExists(
 IN CONST CHAR16 *Name
);

Parameters
Name – Pointer to a null-terminated string that specifies the path of the file to test.

Status Codes Returned
EFI_SUCCESS – The file specified by Name exists.

EFI_NOT_FOUND – The file specified by Name does not exist.

ShellFileHandleReturnLine()

This function reads a single line from a file handle. The \n is not included in the re-
turned buffer. The returned buffer must be freed by the caller.

If the file position upon start is 0, then Ascii is updated based on the presence
or absence of Unicode byte order marks. This value should not be changed for all op-
erations with the same file.

 Note: Lines returned by this function are always in Unicode UCS-2, even if the original file was in
ASCII.

Prototype
CHAR16*
EFIAPI
ShellFileHandleReturnLine(
 IN SHELL_FILE_HANDLE Handle,
 IN OUT BOOLEAN *Ascii
);

  Appendix D: UEFI Shell Library

Parameters
Handle – File handle to read from.

Ascii – On entry, specifies whether the file is ASCII (TRUE) or Unicode UCS2
(FALSE). On exit, if the file position was at 0, this indicates whether the Unicode byte
order marks were found at the beginning of the file (FALSE) or not (TRUE).

Return Values
Pointer to a null-terminated string, or NULL if there are no more lines.

ShellFileHandleReadLine()

This function reads a single line from a file handle into a provided buffer. The \n is
not included in the provided buffer.

If the file position upon start is 0, then Ascii is updated based on the presence
or absence of Unicode byte order marks. This value should not be changed for all op-
erations with the same file.

 Note: Lines returned by this function are always in Unicode UCS-2, even if the original file was in
ASCII.

Prototype
EFI_STATUS
EFIAPI
ShellFileHandleReadLine(
 IN SHELL_FILE_HANDLE Handle,
 IN OUT CHAR16 *Buffer,
 IN OUT UINTN *Size,
 IN BOOLEAN Truncate,
 IN OUT BOOLEAN *Ascii
);

Parameters
Handle – File handle to read from.

Buffer – The pointer to buffer to read into. If this function returns EFI_SUCCESS,
then on exit, Buffer will contain a Unicode UCS-2 string, even if the file being read
is ASCII.

 Functions  

Size – On entry, pointer to an unsigned integer that specifies number of bytes in
Buffer. On exit, unchanged unless Buffer is too small to contain the next line of
the file. In that case Size is set to the number of bytes needed to hold the next line
of the file (as a UCS2 string, even if it is an ASCII file).

Truncate – Boolean that specifies that, if the buffer is too small and this TRUE, the
line will be truncated. If the buffer is too small and Truncate is FALSE, then no
read will occur. If the buffer is large enough, this has no effect.

Ascii – On entry, specifies whether the file is ASCII (TRUE) or Unicode UCS2
(FALSE). On exit, if the file position was at 0, this indicates whether the Unicode byte
order marks were found at the beginning of the file (FALSE) or not (TRUE).

Status Codes Returned
EFI_SUCCESS – The operation was successful. The line is stored in Buffer.

EFI_END_OF_FILE – There are no more lines in the file.

EFI_INVALID_PARAMETER – Handle was NULL or Size was NULL.

EFI_BUFFER_TOO_SMALL – Size was not large enough to store the line. Size
was updated to the minimum space required.

ShellFindFilePath()

This function finds a file by searching the current working directory and then the di-
rectories specified by the path environment variable.

Prototype
CHAR16 *
EFIAPI
ShellFindFilePath (
 IN CONST CHAR16 *FileName
);

Parameters
FileName – Pointer to a null-terminated string that specifies the name of the file to
search for.

  Appendix D: UEFI Shell Library

Return Values
The pointer to the complete path of the file found, or NULL if the file was not found.
The caller is responsible for freeing this string.

ShellFindFilePathEx()

This function finds a file by searching the current working directory and then the di-
rectories specified by the path environment variable, optionally trying alternate file
extensions in the file name. If the file name specified is not found it will try again for
each file extension in FileExtension in the order provided and return the first
one successful. If FileExtension is NULL, then the behavior is identical to
ShellFindFilePath.

Prototype
CHAR16 *
EFIAPI
ShellFindFilePathEx (
 IN CONST CHAR16 *FileName,
 IN CONST CHAR16 *FileExtension
);

Parameters
FileName – Pointer to a null-terminated string that specifies the file name to search
for.

FileExtension – Pointer to a null-terminated string that specifies the list of zero
or more possible file extensions, delimited by a semicolon.

Return Values
Pointer to null-terminated string that indicates the complete path of the file found, or
NULL if none was found. The caller is responsible for freeing this string.

ShellFindFirstFile()

This function opens a directory and gets the first file’s information in the directory.
Caller can use ShellFindNextFile() to get other files.

 Functions  

Prototype
EFI_STATUS
EFIAPI
ShellFindFirstFile(
 IN SHELL_FILE_HANDLE DirHandle,
 OUT EFI_FILE_INFO **Buffer
);

Parameters
DirHandle – The handle of the directory to search in.

Buffer – The pointer to the buffer containing the first file’s returned info. The struc-
ture EFI_FILE_INFO is defined in the UEFI Specification.

Status Codes Returned
EFI_SUCCESS – Found the first file.

EFI_NOT_FOUND – Cannot find the directory.

EFI_NO_MEDIA – The device has no media.

EFI_DEVICE_ERROR – The device reported an error.

EFI_VOLUME_CORRUPTED – The file system structures are corrupted.

ShellFindNextFile()

This function retrieves the next entries from a directory. To use this function, the
caller must first call the ShellFindFirstFile() function to get the first direc-
tory entry. Subsequent directory entries are retrieved by using the ShellFind-
NextFile() function. This function can be called several times to get each entry
from the directory. If the call of ShellFindNextFile() retrieved the last direc-
tory entry, the next call of this function will set *NoFile to TRUE and free the buffer.

Prototype
EFI_STATUS
EFIAPI
ShellFindNextFile(
 IN SHELL_FILE_HANDLE DirHandle,
 IN OUT EFI_FILE_INFO *Buffer,

  Appendix D: UEFI Shell Library

 OUT BOOLEAN *NoFile
);

Parameters
DirHandle – The file handle of the directory to search in.

Buffer – On entry, specifies the file information for the previous file found. On exit,
contains the next file’s information.

NoFile – On return, indicates whether any more files exist.

Status Codes Returned
EFI_SUCCESS – Found the next file.

EFI_NO_MEDIA – The device has no media.

EFI_DEVICE_ERROR – The device reported an error.

EFI_VOLUME_CORRUPTED – The file system structures are corrupted.

ShellFlushFile()

This function flushes all modified data associated with a file to a device.

Prototype
EFI_STATUS
EFIAPI
ShellFlushFile (
 IN SHELL_FILE_HANDLE FileHandle
);

Parameters
FileHandle – The file handle on which to flush data.

Status Codes Returned
EFI_SUCCESS – The data was flushed.

EFI_NO_MEDIA – The device has no media.

 Functions  

EFI_DEVICE_ERROR – The device reported an error.

EFI_VOLUME_CORRUPTED – The file system structures are corrupted.

EFI_WRITE_PROTECTED – The file or medium is write-protected.

EFI_ACCESS_DENIED – The file was opened for read-only access.

EFI_VOLUME_FULL – The volume is full.

SHELL_FREE_NON_NULL()

This macro frees the block of memory specified by a variable if it is non-NULL, and
then sets the variable to NULL.

Prototype
#define SHELL_FREE_NON_NULL(Pointer) \
 do { \
 if ((Pointer) != NULL) { \
 FreePool((Pointer)); \
 (Pointer) = NULL; \
 } \
 } while(FALSE)

Parameters
Pointer – L-value that contains the pointer to the block of memory to be freed.

Return Values
None

ShellGetCurrentDir()

This function returns the current working directory for the specified file system. If the
DeviceName is NULL, it returns the current device’s current directory. If the De-
viceName is not NULL, it returns the current directory name for the specified device.

 Note: The current directory string should exclude the tailing backslash character.

  Appendix D: UEFI Shell Library

Prototype
CONST CHAR16*
EFIAPI
ShellGetCurrentDir (
 IN CHAR16 * CONST DeviceName OPTIONAL
);

Parameters
DeviceName – Optional pointer to a null-terminated string that specifies the device
to return the current directory for. If not specified, then the current working directory
is returned.

Return Values
Pointer to a null-terminated string that contains the current directory for the specified
device, or NULL if the device doesn’t exist or doesn’t have a current directory.

ShellGetEnvironmentVariable()

This function returns the value of the specified environment variable.

Prototype
CHAR16 *
EFIAPI
ShellGetEnvironmentVariable (
 IN CONST CHAR16 *EnvKey
);

Parameters
EnvKey – A pointer to the environment variable name.

Return Values
Pointer to the null-terminated string that contains the environment variable value, or
NULL if the environment variable does not exist.

 Functions  

ShellGetExecutionBreakFlag()

This function retrieves the status of the break execution flag. This function is useful
to check whether the application is being asked to halt by the UEFI Shell when, for
example, the user presses Ctrl-C.

Prototype
BOOLEAN
EFIAPI
ShellGetExecutionBreakFlag(
 VOID
);

Parameters
None

Return Values
Boolean that indicates whether a break has been requested (TRUE) or not (FALSE).

ShellGetFileInfo()

This function gets the file information from an open file handle and stores it in an
allocated buffer. The caller is responsible for freeing this buffer.

Prototype
EFI_FILE_INFO *
EFIAPI
ShellGetFileInfo (
 IN SHELL_FILE_HANDLE FileHandle
);

Parameters
FileHandle – The file handle associated with the file about which information is
being requested.

Return Values
A pointer to the returned file information, or NULL if there was an error. The structure
EFI_FILE_INFO is defined in the UEFI specification.

  Appendix D: UEFI Shell Library

ShellGetFilePosition()

This function returns the current file position for the file handle. For directories, the
current file position has no meaning outside of the file system driver and as such the
operation is not supported.
An error is returned if FileHandle is a directory.

Prototype
EFI_STATUS
EFIAPI
ShellGetFilePosition (
 IN SHELL_FILE_HANDLE FileHandle,
 OUT UINT64 *Position
);

Parameters
FileHandle – The file handle on which to get the current position.

Position – Byte position from the start of the file.

Status Codes Returned
EFI_SUCCESS – Data was accessed.

EFI_INVALID_PARAMETER – File handle is invalid or Position is NULL.

EFI_UNSUPPORTED – The request is not valid on open directories.

ShellGetFileSize()

This function returns a file’s size

Prototype
EFI_STATUS
EFIAPI
ShellGetFileSize(
 IN SHELL_FILE_HANDLE FileHandle,
 OUT UINT64 *Size
);

 Functions  

Parameters
FileHandle – The file handle associated with the file.

Size – Pointer to the returned size of this file.

Status Codes Returned
EFI_SUCCESS – The operation completed successfully. Size was updated with the
file’s size.

EFI_DEVICE_ERROR – Cannot access the file.

ShellHexStrToUintn()

This function return the number converted from a hexadecimal representation of a
number.

 Note: This function cannot be used when (UINTN)(-1), (0xFFFFFFFF) may be a valid result. Use
ShellConvertStringToUint64 instead.

Prototype
UINTN
EFIAPI
ShellHexStrToUintn(
 IN CONST CHAR16 *String
);

Parameters
String – Pointer to a null-terminated string that specifies the string representation
of a number.

Return Values
The unsigned integer result of the conversion, or (UINTN)(-1) if there was an error.

  Appendix D: UEFI Shell Library

ShellInitialize()

This function causes the shell library to initialize itself. If the shell library is already
initialized it will de-initialize all the current protocol pointers and re-populate them
again.

When the library is used with PcdShellLibAutoInitialize set to true this
function will return EFI_SUCCESS and perform no actions.

Prototype
EFI_STATUS
EFIAPI
ShellInitialize (
 VOID
);

Parameters
None

Status Codes Returned
EFI_SUCCESS – Initialization completed successfully.

ShellIsDecimalDigitCharacter()

This function checks whether a Unicode character is a decimal character. The valid
characters are L'0' to L'9'.

Prototype
BOOLEAN
EFIAPI
ShellIsDecimalDigitCharacter (
 IN CHAR16 Char

);

Parameters
Char – The character to test.

Return Values
Boolean that indicates whether the character is a valid decimal character (TRUE) or not
(FALSE).

 Functions  

ShellIsDirectory()

This function returns whether the specified file name represents a directory.

Prototype
EFI_STATUS
EFIAPI
ShellIsDirectory(
 IN CONST CHAR16 *DirName
);

Parameters
DirName – Pointer to a null-terminated string that specifies the path to test.

Status Codes Returned
EFI_SUCCESS – The path represents a directory.

EFI_NOT_FOUND – The path does not represent a directory.

ShellIsFile()

This function returns whether the file exists in the current working directory.

Prototype
EFI_STATUS
EFIAPI
ShellIsFile(
 IN CONST CHAR16 *Name
);

Parameters
Name – Pointer to a null-terminated string that specifies the file name to test.

Status Codes Returned
EFI_SUCCESS – The path represents a file.

EFI_NOT_FOUND – The path does not represent a file.

  Appendix D: UEFI Shell Library

ShellIsFileInPath()

This function returns whether the specified file exists in the current working directory
or any of the directories specified by the path environment variable.

Prototype
EFI_STATUS
EFIAPI
ShellIsFileInPath(
 IN CONST CHAR16 *Name
);

Parameters
Name – Pointer to a null-terminated string that specifies the file name to test.

Status Codes Returned
EFI_SUCCESS – The path represents a file.

EFI_NOT_FOUND – The path does not represent a file.

ShellIsHexaDecimalDigitCharacter()

Returns whether a Unicode character is a hexadecimal character. This function
checks if a Unicode character is a numeric or hexadecimal character. The valid hex-
adecimal characters are L'0' to L'9', L'a' to L'f', or L'A' to L'F'.

Prototype
BOOLEAN
EFIAPI
ShellIsHexaDecimalDigitCharacter (
 IN CHAR16 Char
);

Parameters
Char – The character to test.

Return Values
Boolean that indicates whether the character is a valid hexadecimal character (TRUE)
or not (FALSE).

 Functions  

ShellIsHexOrDecimalNumber()

This function checks whether an entire string is a valid number. For hexadecimal
numbers, the number must be preceded with a 0x, 0X, or else ForceHex is set to
TRUE.

Prototype
BOOLEAN
EFIAPI
ShellIsHexOrDecimalNumber (
 IN CONST CHAR16 *String,
 IN CONST BOOLEAN ForceHex,
 IN CONST BOOLEAN StopAtSpace
);

Parameters
String – Pointer to a null-terminated string to evaluate.

ForceHex – Boolean that specifies whether the entire string should be evaluated as
a hexadecimal representation (TRUE) or a possible decimal or hexadecimal string
(FALSE).

StopAtSpace – Boolean that specifies whether to halt upon finding a space (TRUE)
or keep going (FALSE).

Return Values
Boolean that indicates whether the string is valid (TRUE) or not (FALSE).

ShellOpenFileByDevicePath()

This function opens a file or a directory by device path with the specified mode. If this
function returns EFI_SUCCESS, the FileHandle is the opened file’s handle; oth-
erwise, the FileHandle is NULL. The Attributes is valid only for
EFI_FILE_MODE_CREATE.

Prototype
EFI_STATUS
EFIAPI
ShellOpenFileByDevicePath(
 IN OUT EFI_DEVICE_PATH_PROTOCOL **FilePath,

  Appendix D: UEFI Shell Library

 OUT EFI_HANDLE *DeviceHandle,
 OUT SHELL_FILE_HANDLE *FileHandle,
 IN UINT64 OpenMode,
 IN UINT64 Attributes
);

Parameters
FilePath – On entry, a pointer to a device path. On exit, a pointer to the remainder
of the device path.

DeviceHandle – On exit, a pointer to the opened device handle.

FileHandle– On exit, a pointer to the opened file handle.

OpenMode – File open mode. See EFI_FILE_MODE_x in the UEFI specification.

Attributes – The file’s File attributes.

Status Codes Returned
EFI_SUCCESS – The file was opened.

EFI_INVALID_PARAMETER – One of the parameters has an invalid value.

EFI_UNSUPPORTED – Could not open the file path.

EFI_NOT_FOUND – The specified file could not be found on the device or the file
system could not be found on the device.

EFI_NO_MEDIA – The device has no medium.

EFI_MEDIA_CHANGED – The device has a different medium in it or the medium is
no longer supported.

EFI_DEVICE_ERROR – The device reported an error.

EFI_VOLUME_CORRUPTED – The file system structures are corrupted.

EFI_WRITE_PROTECTED – The file or medium is write-protected.

EFI_ACCESS_DENIED – The file was opened read-only.

 Functions  

EFI_OUT_OF_RESOURCES – Not enough resources were available to open the file.

EFI_VOLUME_FULL – The volume is full.

ShellOpenFileByName()

This function opens a file or a directory by file name, with the specified mode.
If this function returns EFI_SUCCESS, the FileHandle is the opened file’s

handle; otherwise, the FileHandle is NULL. The Attributes is valid only for
EFI_FILE_MODE_CREATE.

Prototype
EFI_STATUS
EFIAPI
ShellOpenFileByName(
 IN CHAR16 *FileName,
 OUT SHELL_FILE_HANDLE *FileHandle,
 IN UINT64 OpenMode,
 IN UINT64 Attributes
);

Parameters
FileName – A pointer to the file name.

FileHandle – A pointer to the opened file handle.

OpenMode – File open mode.

Attributes – The file’s File attributes.

Status Codes Returned
EFI_SUCCESS – The file was opened.

EFI_INVALID_PARAMETER – One of the parameters has an invalid value.

EFI_UNSUPPORTED – Could not open the file path.

EFI_NOT_FOUND – The specified file could not be found on the device or the file
system could not be found on the device.

  Appendix D: UEFI Shell Library

EFI_NO_MEDIA – The device has no medium.

EFI_MEDIA_CHANGED – The device has a different medium in it or the medium is
no longer supported.

EFI_DEVICE_ERROR – The device reported an error or cannot get the file path ac-
cording to the FileName.

EFI_VOLUME_CORRUPTED – The file system structures are corrupted.

EFI_WRITE_PROTECTED – An attempt was made to create a file, or to open a file
for writing, when the medium is write-protected.

EFI_ACCESS_DENIED – The service denied access to the file.

EFI_OUT_OF_RESOURCES – Not enough resources were available to open the file.

EFI_VOLUME_FULL – The volume is full.

ShellOpenFileMetaArg()

This function opens the files that match the path specified. It uses the Arg pointer to
open all the matching files. Each matched file has a SHELL_FILE_ARG structure to
record the file information. These structures are placed on the list ListHead. Users
can get the SHELL_FILE_ARG structures from ListHead to access each file.
This function supports wildcards.

Prototype
EFI_STATUS
EFIAPI
ShellOpenFileMetaArg (
 IN CHAR16 *Arg,
 IN UINT64 OpenMode,
 IN OUT EFI_LIST_ENTRY *ListHead
);

Parameters
Arg – Pointer a null-terminated string that specifies the path.

 Functions  

OpenMode – Bitmask that specifies the mode of the newly opened file. See
EFI_FILE_MODE_x in the UEFI specification.

ListHead – A list of files that match the specified path.

Status Codes Returned
EFI_SUCCESS – The file list was successfully created.

ShellPrintEx()

Print at a specific location on the screen. This function will move the cursor to a given
screen location and print the specified string. If -1 is specified for either the Row or
Col the current screen location for BOTH will be used.

In addition to the standard %-based flags as supported by UefiLib’s Print(),
this supports the following additional flags:
■ %N – Set output attribute to normal
■ %H – Set output attribute to highlight
■ %E – Set output attribute to error
■ %B – Set output attribute to blue color
■ %V – Set output attribute to green color

 Note: The background color is controlled by the shell command cls.

Prototype
EFI_STATUS
EFIAPI
ShellPrintEx(
 IN INT32 Col OPTIONAL,
 IN INT32 Row OPTIONAL,
 IN CONST CHAR16 *Format,
 ...
);

Parameters
Col – The column at which to print.

Row – The row at which to print.

Format – The format string.

  Appendix D: UEFI Shell Library

... – The variable argument list.

Status Codes Returned
EFI_SUCCESS – The printing was successful.

EFI_DEVICE_ERROR – The console device reported an error.

ShellPrintHelp()

This function prints help file/man page content for a UEFI Shell command.

Prototype
EFI_STATUS
EFIAPI
ShellPrintHelp (
 IN CONST CHAR16 *CommandToGetHelpOn,
 IN CONST CHAR16 *SectionToGetHelpOn,
 IN BOOLEAN PrintCommandText
);

Parameters
CommandToGetHelpOn – Pointer to a null-terminated string that specifies the
command name of the help file to be printed.

SectionToGetHelpOn – Pointer to the null-terminated string that specifies the
section(s).

PrintCommandText – Boolean that specifies whether the command should be
printed and then the help content (TRUE) or just the help content (FALSE).

Status Codes Returned
EFI_SUCCESS – The operation was successful.

EFI_DEVICE_ERROR – The help data format was incorrect.

EFI_NOT_FOUND – The help data could not be found.

 Functions  

ShellPrintHiiEx()

Print a string from the HII database at a specific location on the screen. This function
will move the cursor to a given screen location and print the specified string. If -1 is
specified for either the Row or Col the current screen location for BOTH will be used.

In addition to the standard %-based flags as supported by UefiLib’s Print(),
this supports the following additional flags:
■ %N – Set output attribute to normal
■ %H – Set output attribute to highlight
■ %E – Set output attribute to error
■ %B – Set output attribute to blue color
■ %V – Set output attribute to green color

 Note: The background color is controlled by the shell command cls.

Prototype
EFI_STATUS
EFIAPI
ShellPrintHiiEx(
 IN INT32 Col OPTIONAL,
 IN INT32 Row OPTIONAL,
 IN CONST CHAR8 *Language OPTIONAL,
 IN CONST EFI_STRING_ID HiiFormatStringId,
 IN CONST EFI_HANDLE HiiFormatHandle,
 ...
);

Parameters
Col – The column at which to print.

Row – The row at which to print.

Language – Pointer to a null-terminated ASCII string that specifies the language to
retrieve. If NULL, then the current platform language is used.

HiiFormatStringId – The string identifier associated with the string to use to
format the output.

HiiFormatHandle – The HII handle of the package list that contains the string
specified by HiiFormatStringId.

  Appendix D: UEFI Shell Library

... – The variable argument list.

ShellPromptForResponse()

This function prompts the user and returns the resulting answer to the caller. This
function will display the requested question on the shell prompt and then wait for an
appropriate answer to be input from the console.

If the Type parameter has a value of ShellPromptResponseTypeYesNo,
ShellPromptResponseTypeQuitContinue or ShellPromptRe-
sponseTypeYesNoAllCancel, then Response points to the response enu-
merated value on exit. If the Type is ShellPromptResponseTypeFreeform
then Response points to a CHAR16 * value on exit. In either case *Response
must be caller freed if Response was not NULL;

Prototype
EFI_STATUS
EFIAPI
ShellPromptForResponse (
 IN SHELL_PROMPT_REQUEST_TYPE Type,
 IN CHAR16 *Prompt OPTIONAL,
 IN OUT VOID **Response OPTIONAL
);

Parameters
Type – Enumerated value that specifies what type of question is asked. This is used
to filter the input to prevent invalid answers to question. Valid values are:

ShellPromptResponseTypeYesNo – Yes or No

ShellPromptResponseTypeYesNoCancel – Yes, No, or Cancel

ShellPromptResponseTypeFreeform – Arbitrary user-typed string.

ShellPromptResponseTypeQuitContinue – Quit or Continue

ShellPromptResponseTypeYesNoAllCancel – Yes, No, All, or Cancel

ShellPromptResponseTypeEnterContinue – Enter

ShellPromptResponseTypeAnyKeyContinue – Any Key

 Functions  

Prompt – Pointer to a null-terminated string that specifies the prompt used to re-
quest input.

Response – On exit, the pointer to the response, which will be populated upon re-
turn. For FreeForm type response this is actually a pointer to a CHAR16 pointer. For
all others, it is one of the following enumerated values:

ShellPromptResponseYes – Yes

ShellPromptResponseNo – No

ShellPromptResponseCancel – Cancel

ShellPromptResponseQuit – Quit

ShellPromptResponseContinue – Continue

ShellPromptResponseAll – All

Status Codes Returned
EFI_SUCCESS – The operation was successful.

EFI_UNSUPPORTED – The operation is not supported as requested.

EFI_INVALID_PARAMETER – A parameter was invalid.

ShellPromptForResponseHii()

This function prompts the user using a string from the HII database and return the
resulting answer to the caller. This function will display the requested question on
the shell prompt and then wait for an appropriate answer to be input from the con-
sole.

If the Type parameter has a value of ShellPromptResponseTypeYesNo,
ShellPromptResponseTypeQuitContinue or ShellPromptRe-
sponseTypeYesNoAllCancel, then Response points to the response enumer-
ated value on exit. If the Type is ShellPromptResponseTypeFreeform then
Response points to a CHAR16 * value on exit. In either case *Response must be
caller freed if Response was not NULL;

  Appendix D: UEFI Shell Library

Prototype
EFI_STATUS
EFIAPI
ShellPromptForResponseHii (
 IN SHELL_PROMPT_REQUEST_TYPE Type,
 IN CONST EFI_STRING_ID HiiPromptStringId,
 IN CONST EFI_HANDLE HiiPromptHandle,
 IN OUT VOID **Response
);

Parameters
Type – Enumerated value that specifies what type of question is asked. This is used
to filter the input to prevent invalid answers to the question. Valid values are:

ShellPromptResponseTypeYesNo – Yes or No

ShellPromptResponseTypeYesNoCancel – Yes, No, or Cancel

ShellPromptResponseTypeFreeform – Arbitrary user-typed string.

ShellPromptResponseTypeQuitContinue – Quit or Continue

ShellPromptResponseTypeYesNoAllCancel – Yes, No, All, or Cancel

ShellPromptResponseTypeEnterContinue – Enter

ShellPromptResponseTypeAnyKeyContinue – Any Key

HiiPromptStringId – The string identifier associated with the string to use to
format the output.

HiiPromptHandle – The HII handle of the package list that contains the string
specified by HiiPromptStringId.

Response – On exit, the pointer to the response, which will be populated upon re-
turn. For FreeForm type response this is actually a pointer to a CHAR16 pointer. For
all others, it is one of the following enumerated values:

ShellPromptResponseYes – Yes

ShellPromptResponseNo – No

 Functions  

ShellPromptResponseCancel – Cancel

ShellPromptResponseQuit – Quit

ShellPromptResponseContinue – Continue

ShellPromptResponseAll – All

Status Codes Returned
EFI_SUCCESS – The operation was successful.

EFI_UNSUPPORTED – The operation is not supported as requested.

EFI_INVALID_PARAMETER – A parameter was invalid.

ShellReadFile()

This function reads data from the file.
If FileHandle is not a directory, the function reads the requested number of

bytes from the file at the file’s current position and returns them in Buffer. If the
read goes beyond the end of the file, the read length is truncated to the end of the file.
The file’s current position is increased by the number of bytes returned.

If FileHandle is a directory, the function reads the directory entry at the file’s
current position and returns the entry in Buffer. If the Buffer is not large enough
to hold the current directory entry, then EFI_BUFFER_TOO_SMALL is returned and
the current file position is not updated. BufferSize is set to be the size of the buffer
needed to read the entry. On success, the current position is updated to the next di-
rectory entry. If there are no more directory entries, the read returns a zero-length
buffer. EFI_FILE_INFO is the structure returned as the directory entry.

Prototype
EFI_STATUS
EFIAPI
ShellReadFile (
 IN SHELL_FILE_HANDLE FileHandle,
 IN OUT UINTN *ReadSize,
 OUT VOID *Buffer
);

  Appendix D: UEFI Shell Library

Parameters
FileHandle – The opened file handle for reading.

ReadSize – On input, the size of Buffer. On output, the amount of data in
Buffer. In both cases, the size is measured in bytes.

Buffer – The buffer in which data is read.

Status Codes Returned
EFI_SUCCESS – Data was read.

EFI_NO_MEDIA – The device has no media.

EFI_DEVICE_ERROR – The device reported an error.

EFI_VOLUME_CORRUPTED – The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL – Buffer is too small. ReadSize contains required
size.

ShellSetFileInfo()

This function sets the file information to an opened file handle.

Prototype
EFI_STATUS
EFIAPI
ShellSetFileInfo (
 IN SHELL_FILE_HANDLE FileHandle,
 IN EFI_FILE_INFO *FileInfo
);

Parameters

FileHandle – A file handle.

FileInfo – Pointer to the updated file information. EFI_FILE_INFO is defined
in the UEFI specification.

 Functions  

Status Codes Returned
EFI_SUCCESS – The information was set.

EFI_INVALID_PARAMETER – A parameter was out of range or invalid.

EFI_UNSUPPORTED – The file handle does not support file information.

EFI_NO_MEDIA – The device has no medium.

EFI_DEVICE_ERROR – The device reported an error.

EFI_VOLUME_CORRUPTED – The file system structures are corrupted.

EFI_WRITE_PROTECTED – The file or medium is write-protected.

EFI_ACCESS_DENIED – The file was opened with read-only access.

EFI_VOLUME_FULL – The volume is full.

ShellSetFilePosition()

This function sets the current file position for the handle to the position supplied.
With the exception of seeking to position 0xFFFFFFFFFFFFFFFF, only absolute
positioning is supported, and seeking past the end of the file is allowed (a subsequent
write would grow the file). Seeking to position 0xFFFFFFFFFFFFFFFF causes the
current position to be set to the end of the file.
If FileHandle is a directory, the only position that may be set is zero.
This has the effect of starting the read process of the directory entries
over.

Prototype
EFI_STATUS
EFIAPI
ShellSetFilePosition (
 IN SHELL_FILE_HANDLE FileHandle,
 IN UINT64 Position
);

  Appendix D: UEFI Shell Library

Parameters
FileHandle – The file handle on which the requested position will be set.

Position – Byte position from the start of the file.

Status Codes Returned
EFI_SUCCESS – Data was written.

EFI_INVALID_PARAMETER – One of the parameters had an invalid value.

EFI_UNSUPPORTED – The seek request for nonzero is not valid on open directories.

ShellSetEnvironmentVariable()

This function changes the current value of the specified environment variable. If the
environment variable exists and the Value is an empty string, then the environment
variable is deleted. If the environment variable exists and the Value is not an empty
string, then the value of the environment variable is changed. If the environment var-
iable does not exist and the Value is an empty string, there is no action. If the envi-
ronment variable does not exist and the Value is a non-empty string, then the envi-
ronment variable is created and assigned the specified value.

Prototype
EFI_STATUS
EFIAPI
ShellSetEnvironmentVariable (
 IN CONST CHAR16 *EnvKey,
 IN CONST CHAR16 *EnvVal,
 IN BOOLEAN Volatile
);

Parameters
EnvKey – Pointer to the null-terminated string that specifies the name of the envi-
ronment variable.

EnvVal – Pointer to the null-terminated string that specifies the value of the envi-
ronment variable

Volatile – Boolean that specifies whether the variable is non-volatile (FALSE) or
volatile (TRUE).

 Functions  

Status Codes Returned
EFI_SUCCESS – The operation completed successfully.

ShellSetPageBreakMode()

This function sets (enabled or disabled) the page break mode. When page break mode
is enabled the screen will stop scrolling and wait for operator input before scrolling a
subsequent screen.

Prototype
VOID
EFIAPI
ShellSetPageBreakMode (
 IN BOOLEAN CurrentState
);

Parameters
CurrentState – Boolean that specifies page break is enabled (TRUE) or disabled
(FALSE).

Return Values
None

ShellStrToUintn()

This function returns the number converted from the string.

 Note: This function cannot be used when (UINTN)(-1), (0xFFFFFFFF) may be a valid result. Use
ShellConvertStringToUint64 instead.

Prototype
UINTN
EFIAPI
ShellStrToUintn(
 IN CONST CHAR16 *String
);

  Appendix D: UEFI Shell Library

Parameters
String – Pointer to a null-terminated string that represents a number.

Return Values
Unsigned integer that indicates the result of the conversion or (UINTN)(-1) if the con-
version failed.

ShellWriteFile()

This function writes the specified number of bytes to the file at the current file posi-
tion. The current file position is advanced the actual number of bytes written, which
is returned in BufferSize.

Partial writes only occur when a data error has occurred during the write attempt
(such as “volume space full”). The file is automatically grown to hold the data if re-
quired. Direct writes to opened directories are not supported.

Prototype
EFI_STATUS
ShellWriteFile(
 IN SHELL_FILE_HANDLE FileHandle,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
FileHandle – The opened file handle for writing.

BufferSize – On input, pointer to the number of bytes in Buffer. On output, the
number of bytes written. In both cases, the size is measured in bytes.

Buffer – Pointer to the buffer in which data is written.

Status Codes Returned
EFI_SUCCESS – Data was written.

EFI_UNSUPPORTED – Writes to an open directory are not supported.

EFI_NO_MEDIA – The device has no media.

 Functions  

EFI_DEVICE_ERROR – The device reported an error.

EFI_VOLUME_CORRUPTED – The file system structures are corrupted.

EFI_WRITE_PROTECTED – The device is write-protected.

EFI_ACCESS_DENIED – The file was open for read-only access.

EFI_VOLUME_FULL – The volume is full.

StrnCatGrow()

This function safely appends with automatic string resizing given length of Destina-
tion and desired length of copy from Source.

Append the first D characters of Source to the end of Destination, where D is the
lesser of Count and the StrLen() of Source. If appending those D characters will fit
within Destination (whose Size is given as CurrentSize) and still leave room for a
NULL terminator, then those characters are appended, starting at the original termi-
nating NULL of Destination, and a new terminating NULL is appended.

If appending D characters onto Destination will result in an overflow of the size
given in CurrentSize the string will be grown such that the copy can be performed
and CurrentSize will be updated to the new size.

If Source is NULL, there is nothing to append, so return the current buffer in Des-
tination.

Prototype
CHAR16*
EFIAPI
StrnCatGrow (
 IN OUT CHAR16 **Destination,
 IN OUT UINTN *CurrentSize,
 IN CONST CHAR16 *Source,
 IN UINTN Count
);

Parameters
Destination – On entry, the string on which to append. On exit, the updated
string.

CurrentSize – On entry, the number of bytes in Destination. On exit, possibly the
new size (still in bytes). If NULL, then allocate whatever is needed.

  Appendix D: UEFI Shell Library

Source – The string to append.

Count – The maximum number of characters to append. If 0, then all are appended.

Return Values
The Destination, after appending the Source.

Data Structures

The following are data structures used in the UEFI Shell Library.

Format Strings

Format strings are normal strings with placeholders for runtime values. The place-
holders are prefixed with the % (percent) character. The characters that follow the %
character determine the type and format of the data to be displayed and have the fol-
lowing format:

 %w.lF

Where w is the width, l is the field width and F is the format. The width w can be any
one of the following:

0 – Pad with zeroes

- (Hyphen) – Left justify (default is right justify)

, – Add commas to the field

* – Width provided on the stack

The field width l, if present, indicates that the value is 64-bits. The format F can be
one of the following:

a – ASCII string

s – Unicode string

X – fixed 8-byte value in hexadecimal

 Data Structures  

x – hexadecimal value

d – value as decimal

c – Unicode character

t – EFI time structure

g – Pointer to GUID

r – EFI status code (result code)

% – Print a %

Shell Parameters

The command-line parsing functions in the Shell library return the parameters in a
linked list that contains SHELL_PARAM_ITEM structures.

Prototype
typedef struct {
 CHAR16 *Name;
 SHELL_PARAM_TYPE Type;
} SHELL_PARAM_ITEM;

Members
Name – Pointer to null-terminated string that specifies the parameter.

Type – Enumerated value that specifies the type of the parameter. Valid values are:
– TypeFlag (0) – A flag that is present or not present.
– TypeValue (1) – A flag that has some data following it with a space

(i.e. “–a 1”).
– TypePosition (2) – Some data that did not follow a parameter, such as a

file name.
– TypeStart (3) – A flag that has additional flags appended to the end. For

example, –ad, -afd, or –adf.
– TypeDoubleValue (4) – A flag that has two values following it.
– TypeMaxValue (5) – A flag followed by all command-line parameters up

to the next flag.
– TypeTimeValue – A flag that has a time value following it.

Index

16-bit 48, 53, 85

A
Ability 13, 43, 45, 59, 67, 76, 234
– endfor command’s 110
ABORTED status code 133
Absolute directory path 197
Abstractions 5, 6, 29, 30, 71, 73, 86
– block I/O 51
– file system level 51
– right level of 52
– underlying program-matic 4
Access networking devices 5
Accessor functions 10
Addh 194, 195
Addh options 194, 195
Addp 194, 195
Address 79, 81, 82, 176, 178, 203, 219
– starting 88, 203, 219
Administrator remote 70, 71, 76
Agents 58, 73, 76, 191
– list of 173
Alias 17, 117, 118, 152, 190, 193, 239
– internal 200, 202, 218
Alt 134, 135
AlwaysAllowNumbers 250
AlwaysAllowNumbers parameter set 250
Answers appropriate 278, 279
APIs 5, 6, 11, 12, 74, 75, 85
Appending 287, 288
AppendLogFile 63, 67
Application 25, 26, 124, 125, 155, 234, 237
– command-line 186
– shell-aware 26
– single 123, 163
Application library 105
Ar 216
Arg 144, 146, 274
ARG structures 274
Argc 27, 66, 122, 142, 144, 240
Argument count 25, 27, 142, 145
Argument index current 144, 145
Arguments 122, 144, 208, 209, 213, 233,

249
– current 143, 144
– invalid command line 251

– shell application’s 240
Argv 27, 28, 66, 131, 142, 144
ASCII 159, 161, 163, 241, 257, 258, 259
ASCII characters 97, 161, 163
– single 159, 160
ASCII file 156, 259
ASCII file types 207
ASCII string 227, 288
– null-terminated 277
ASCII value 135
Ascii-string 227
ASCII-to-Unicode 158, 159
Asterisk 233
Attrib 17, 117, 190, 194
Attributes 113, 114, 123, 124, 194, 272, 273
Attributes of files 190, 194
Automatic policy 215
Automatic string resizing 245, 287
AutoPageBreak 250
Av 234, 235

B
B6, 80
Background color 190, 197, 275, 277
BackupImageHandle 63, 64
BAR 178, 179
Bare Metal Provisioning 55, 56, 58, 60, 62,

64, 66
Basic file system commands 189
Basic Input Output System 1
Basic Overview of Commands 22
Bcfg 190, 194, 195
BDS (Boot Device Selection), 37
Beginning 33, 55, 80, 210, 211, 258, 259
Binary description 73
Binary executable content 181
Binary programs 19, 20, 24, 25, 76
BIOS 1, 15, 67, 69, 70, 71, 73
– underlying UEFI-compatible 73
BIOS and OS-present components 73
BIOS compliant 87
BIOS Information 91, 227
BIOS initialization 70
BIOS Setting Changes 70, 71
BIOS-based configuration settings 70
Bitwise 140, 146, 151, 152

  Index

Blade server 40, 41, 44
Blades 44, 45
Blk0, 30, 80
BLK1, 30
Block count 200
Block devices 30, 38, 51, 190, 191, 200, 210
Block I/O 50, 52
Block number starting 210
Blocks 29, 52, 80, 190, 191, 200, 210
Board Devices Information 227
Boolean 63, 250, 256, 258, 270, 271, 284
Boolean functions 212
Boolean operators 119, 139
Boolfunc 211
Boot 10, 35, 37, 41, 194, 195, 196
– standard UEFI 122
Boot Device Selection (BDS), 37
Boot image 60
Boot Mode Functions 35
Boot option 119, 196
Boot options new 119, 120
Boot server 58, 60, 61, 62
Boot services 10, 11, 26, 81, 173
– querying UEFI 9
Boot services application 10
Boot target 1, 5, 44, 70
Bootable device/media 18
BootOrder/DriverOrder 196
BootServices 11, 27, 28
BOOTSHELL 64
Boxes 39, 47, 48, 49, 50, 51, 52
Break 48, 66, 67, 108, 265
BREAKPOINT 176
BRIDGE 178, 179
Buffer 103, 258, 259, 261, 281, 282, 286
– existing 241
– returned 257
BufferSize 281, 286
Build 53, 121, 123, 124, 163, 175, 176
Build description 123, 138, 139
Build environment 53, 121, 186
Bus 52, 204, 219, 221, 222
Bus I/O 52
Bus number 203, 222
Buses 35, 36, 51
Bytes 82, 88, 97, 159, 219, 286, 287
– requested number of 239, 281

C
Cadab 108, 109
Caller 208, 257, 260, 261, 265, 278, 279
Capabilities 10, 13, 35, 72, 76, 86, 87
– basic command 193
– functional 4
– key shell 155
Cases 15, 16, 66, 67, 162, 181, 238
Cd 17, 80, 117, 189, 190, 196, 197
CD-ROM drive 41
Certificate 60, 182
Chaining of Script Commands 24
Chaining of UEFI Shell scripts 22
Chaired 3
Char 66, 122, 268, 270
CHAR16, 27, 28, 63, 256, 264, 278, 287
CHAR16 pointer 279, 280
Characters 136, 157, 159, 233, 245, 287,

288
– non-printable 136
– single 161, 162
Chassis Management Module (CMM), 44
CheckList 250
CheckPackage 246, 247, 248, 249, 250
Child 170, 203, 205, 206, 223
Child devices 77, 78, 79, 173, 204, 205, 206
Child devices of device 77, 78
Class 20, 45, 52, 86
Cli 4, 63, 64
Client 15, 16, 55, 57, 58, 60, 62
Client machine 58, 59, 60, 61
CloseFile 238
Cls 17, 117, 190, 197
Cmd 210
CmdLine 256
CMM (Chassis Management Module), 44
Code 33, 34, 37, 53, 79, 102, 176
– specified language 200, 201, 202, 204,

205, 206
COFF (Common Object File Format), 182
Col 220, 275, 277
Color 197
– blue 275, 277
– green 275, 277
Columns 113, 114, 115, 192, 193, 220, 244
– parse filename tablename 221
Comma 113, 193, 217, 288
Command 173, 208, 209, 210, 213, 234, 235
– additional 107

 Index  

– appropriate shell interface 31
– associated 233
– basic 189
– batch 7
– bcfg 119
– best 170
– common 76, 79
– cp 118
– echo 108
– endfor 113
– endfor script 111
– endif 210
– environment variable 117
– err 177
– executed 235, 256
– executes 191
– exit 111
– file manipulation 217
– following 92
– goto 109, 110, 209
– help 209
– internal 64, 92, 94
– list of 22, 189, 191
– matching endfor 191
– parse 113, 114
– pause 221
– reading 207
– script-based 22
– scripting 6
– shell-enabled 31
– shift 110, 227
– specified 209, 238, 239, 255, 256
– standard 7
– unload 169
Command changes 196
Command clears 197
Command condition 191
Command Description 190, 191, 192
Command Details 193, 195, 197, 199, 201,

203, 205
Command executes 208, 210
Command execution 240
Command exercises 169
Command exits 207
Command line 6, 143, 144, 233, 236, 248,

255
Command line arguments 251
Command Line Interface Features 6
Command Line Parsing 243

Command loads 215
Command manages 194
Command name 276
Command parses 168
Command Piping 234, 235
Command processor 4, 6
Command profiles 9, 189
Command prompt 22
Command Reference 189, 190, 192, 194,

196, 198, 200
Command resets 223
Command set 236
Command support 7
Command syntax 234, 235
Command tests 170
Command unloads 230
Command updates 229
Command-line 128, 131, 143, 144, 146, 155,

247
CommandLine 255, 256
Command-line APIs 6
Command-line argument count 143
Command-line arguments 139, 143, 144,

243, 244, 249, 250
– first 143
– last 143
– list of 247
– list of parsed 248, 249
Command-line environment 13
– interactive 9
Command-Line Handling 155
Command-line handling advanced 155
Command-line monitor 13
Command-line options 115, 130, 131, 132,

155, 156, 157
– parsed 243
Command-line parameters 28, 31, 108, 109,

110, 111, 113
– first 108, 130
– next 111
Command-line parsing 243
Command-line parsing functions 243, 289
Command-line parsing in UnicodeDecode

157
Command-line processing 151
– simple 130
Command-line processor 6
Command-line syntax 76, 78, 79, 80, 81, 82
– appropriate 76, 78, 80

  Index

Command-line Usage for dblk 80
Command-line Usage for dmem 81
Command-line Usage for drvcfg 76
Command-line Usage for drvdiag 78, 82
Command-line Usage for memmap 79
Command-name 115, 193
CommandToGetHelpOn 276
Common Object File Format (COFF), 182
Comp 190, 197
Companies 3, 48, 50, 53, 54
Comparison function case-sensitive 144
Comparisons 182, 211
Complexity 5, 6
Compliance driver model 73
Component information 123, 125, 137, 138,

154, 163
Component information file 139
– simple 154, 164
Component Name 166, 171, 172
Component Name Protocol 172
Component Name protocol to retrieve 171,

172
Components 6, 37, 53, 72, 123, 124, 139
Compressed input file 207
Compressed output file 207
Computer 1, 5, 85
Concat1 output-file 112
Concatenate Text Files 112
Concepts 15, 16, 22, 24, 58, 75, 189
Condition 53, 177, 191, 211
Conditional expressions 211, 213
Configuration 38, 44, 45, 69, 77, 214, 215
– current TCP/IP 191
– device’s 76
– golden 44, 47
Configuration Access 73, 74, 75
Configuration data 70, 72, 73, 74, 75
Configuration event 73, 74, 75
Configuration infrastructure 69, 72, 73, 76,

79
– modern UEFI 71
– platform’s 76, 205
– underlying 76
– underlying UEFI 70
Configuration Infrastructure Overview 71
Configuration of Provisioned Material 69,

70, 72, 74, 76, 78, 80
Configuration routing services 72
Configuration services 69, 74, 75

Configuration space device’s PCI 79
Configure 33, 70, 76, 190, 205
Configuring 47, 50, 76, 77, 79, 81, 83
Connect 168, 169, 170, 173, 198, 215, 216
Connect commands 169, 170, 198
Connect console devices 198
Connect DeviceHandle 167
Connect DeviceHandle DriverHandle 167
Connect Driver Binding 166
Connecting UEFI Drivers 169
Connection-oriented protocol 62
Connections 47, 198
Console 38, 86, 190, 192, 197, 278, 279
Console devices 49, 170, 198, 202, 276
– standard 122
Console output 189, 197
CONST BOOLEAN ParameterReplacing 251
CONST CHAR16, 249, 251, 260, 264, 269,

276, 284
CONST DeviceName 264
CONST KeyString 36, 248, 277, 280
CONST LIST 246, 248, 249
CONST SHELL 250
&Context 65
Control 33, 36, 37, 43, 50, 51, 107
Control characters 135, 136
Controller 74, 75, 205
– device’s host 52
Conversion 54, 252, 267, 286
Copy 5, 7, 18, 20, 31, 116, 287
COPY command 31
CORRUPTED 253, 255, 261, 262, 263, 282,

283
Count 107, 197, 198, 215, 222, 287, 288
Cp 17, 116, 117, 190, 193, 199
CPU 36, 38, 47, 70
CR 176
CreateFile 238
Creation 3
Current directory string 263
Current file position 209, 239, 240, 266,

281, 283, 286
Current time zone 229
Current working directory 196, 197, 199,

212, 220, 242, 243
CurrentSize 287
Cursor 275, 277
Custom profile names 118
Customer-visible value 85, 86

 Index  

Cyan 197
Cycle 178

D
Data
– command-line parameter 26
– dirty cached file 238, 245
– optional 195, 196
– packed 94
– passed-in entry point 29
– passing variable 90
– standard entry point 28
– string-based 72
Data bits 224, 225
Data files 34
Data structures 86, 95, 96, 238, 241, 288,

289
– variable length 6
Date 17, 54, 117, 190, 192, 199, 229
David 182
Daylight saving time 229
Days 5, 48, 50, 187
Dblk 79, 80, 190, 200
Dblk device 80, 200
Dblk fs0, 80
Dd 81, 83, 199, 203, 219
Debug 175, 176, 177, 178, 190, 191, 192
Debug build 175
Debug code 175
Debug information 180
Debug Macro 175, 176
Debug UEFI drivers 166
Debugging Code Statements 175
Declarations 96, 124, 138
– global 127
Decode 134, 201, 202
Decompressed output file 207
Default file name 207
Defaults force 77, 174, 205
Defects 49
DeleteFile 238
Deletes 190, 192, 218, 225
Description 96, 97, 98, 99, 100, 195, 209
– detailed 165, 173
– user-readable 195, 196
Destination 47, 190, 191, 199, 220, 287,

288
Destination file/directory name 220
Dev 221, 222

Developer’s UEFI Emulation (DUET), 18
Device diagnostics 190
Device drivers 72, 73
Device Information 171, 173
Device mappings 121, 217
Device memory 79, 190, 191, 203
Device names 172, 201
Device number 203, 222
Device path 51, 73, 195, 196, 201, 239, 272
– associated 239
Device path text format 227
Device registers 52
Device tree 172, 201
Device type 217
Device-handle 198, 201, 202, 203, 205,

206, 223
DeviceHandle 77, 78, 272
Device-handle
– disconnect 202
– reconnect 223
DeviceName 263, 264
Device-path 227
Devices 52, 77, 78, 172, 173, 174, 198
– add-in 73
– bootable 18
– byte-stream-based 179
– current 196, 217, 256, 263
– device’s 74, 75
– installed 50, 217
– list of 77, 78, 190, 200
– managed 73, 74, 75
– single 169, 173
– specified 190, 198, 201, 202, 223, 263,

264
– standard error 176, 177
– standard output 107, 220, 230
– uninstalled 217, 218
Devices and Drivers commands 174
Devices command 172
Devices command lists 172
Devices Component Name 166
Devtree 172, 190, 201
DevTree commands 172, 173
Dh 166, 167, 169, 173, 198, 201, 202
Dh command 195, 196, 201, 202, 203, 205,

206
DHCP (Dynamic Host Configuration Proto-

col), 62
Diagnose 206

  Index

Diagnostics 12, 13, 43, 78, 85, 86, 206
Diagram 36, 57, 86
Digital signature 60, 181, 182, 183, 184
Digits 199, 208, 217
Dir 7, 20, 190, 193, 219
Directory 118, 194, 199, 219, 220, 224, 261
– current 118, 197, 236, 238, 239, 263, 264
– existing 220, 253
– root 239
– specified 117, 238
Directory contents command lists 216
Directory entries 261, 281, 283
Directory names 194, 197, 198, 199, 216,

219, 253
– current 263
DirHandle 261, 262
DirName 253, 269
Disconnect 169, 170, 173, 190, 202, 203
Disconnect command 169, 170, 223
Disconnect command stops UEFI drivers

170
Disconnect DeviceHandle DriverHandle 167
Discovery 29, 30
Disk 30, 42, 43, 52, 62, 85, 181
– hard 39, 41, 217
Disk I/O 52
Disk Operating System 5
Display 77, 80, 114, 198, 216, 220, 221
Display device tree information for devices

201
Display header and element detail infor-

mation 91
Display information 201, 216
Display memory 82
Display option 94
Display output in standard format output

219
Display statistics table 228
Display structures 91
Dmem 79, 81, 82, 190, 193, 203, 218
Dmem command 81
DMI 97, 103, 104
DmiBIOSRevision 102, 103
DmiStorageBase 102, 103
DmiStorageSize 102, 103
Dmpstore 204
DMTF 90
DOI 8, 9, 14, 15, 46, 47, 84
Download 18, 58, 60, 62

Drive
– bootable 7
– hard 47, 48, 50, 181
Driver and Device Information 171, 173
Driver Binding 166, 173, 198
Driver Binding Protocol 168, 170
Driver Binding Protocol of UEFI drivers 170
Driver Configuration and Driver Diagnostics

Protocols 174
Driver Configuration ForceDefaults 166
Driver Configuration OptionsValid 166
Driver Configuration Protocol 174
Driver Configuration Protocol implementa-

tion 174
Driver Configuration SetOptions 166
Driver Diagnostics Protocol 76, 174, 175,

206
Driver Diagnostics Protocol in manufacturing

mode 175
Driver Diagnostics Protocol in standard

mode 175
Driver image 192, 230
Driver information 205
Driver initialization 73, 74, 75
Driver list 171, 196
Driver Model Interactions 73
Driver type 204
DriverBinding 167
DriverEntryPoint 166, 167
DriverHandle 77, 78, 167
Drivers 72, 73, 77, 173, 190, 198, 204
– bcfg 195
– command reconnects 223
– file system 266
– loaded 168, 215
– single 74, 121, 173
– specified 205, 223
Drivers command lists 171
Drivers commands 169, 171, 174
Drivers Component Name GetDriverName

166
Drivers interact 72
Drvcfg 76, 77, 78, 166, 174, 190, 205
DrvCfg command 76, 174
Drvdiag 76, 78, 79, 82, 174, 175, 206
DrvDiag command 78, 82, 86, 174, 175
DUET (Developer’s UEFI Emulation), 18
Dump 91, 195, 202

 Index  

Dumps information 171, 200, 201, 202, 204,
205, 206

Dumps UEFI Driver 202
DXE 34, 35, 36, 37, 42
DXE core file 34
DXE phase 36
Dynamic Host Configuration Protocol

(DHCP), 62

E
EAP (Extensible Authentication Protocol), 57,

58, 59, 60
EB 80, 81
Echo 108, 109, 110, 114, 116, 117, 206
Echo request datagram 222
Echo1, 107, 108, 109
Echo2, 107, 109, 110
Echo3, 107, 110, 111, 112
Edit 190, 207, 210
EDK2 build files 53
EFI 27, 35, 36, 64, 177, 255, 272
EFI device path 73, 172
EFI Device Path Display Format Overview

section 227
EFI file system messages 177
EFI status code 289
EFI SYSTEM TABLE 79, 240
EFI system table pointer entries 81
EFI time structure 289
EFI variables 71, 119
EFIAPI 63, 64, 256, 257, 264, 265, 269
EFIAPI ShellCommandLineCheckDuplicate

246
EFIAPI ShellCommandLineFreeVarList 247
EFIAPI ShellCommandLineGetFlag 248
EFIAPI ShellCommandLineGetRawValue 249
EFIAPI ShellCommandLineGetValue 249
EFIAPI ShellCommandLineParseEx 250
EFIAPI ShellConvertStringToUint 252
EFIAPI ShellCopySearchAndReplace 251
EFIAPI ShellCreateDirectory 253
EFIAPI ShellDeleteFileByName 255
EFIAPI ShellFileHandleReturnLine 257
EFIAPI ShellFindFilePath 259
EFIAPI ShellFindNextFile 261
EFIAPI ShellGetEnvironmentVariable 264
EFIAPI ShellGetExecutionBreakFlag 265
EFIAPI ShellIsDecimalDigitCharacter 268
EFIAPI ShellIsFileInPath 270

EFIAPI ShellIsHexaDecimalDigitCharacter
270

EFIAPI ShellOpenFileByDevicePath 271
EFIAPI ShellOpenFileByName 273
EFIAPI ShellPromptForResponse 278
EFIAPI ShellPromptForResponseHii 280
EFIAPI ShellSetEnvironmentVariable 284
EfiDriver.efi 168
EfiPciIoWidthUint 178, 179
EISBN 8, 9, 14, 15, 46, 47, 84
Electron 44
Endfor 17, 107, 110, 112, 117, 208, 209
Endif 109, 110, 112, 114, 115, 116, 213
Engineers 48, 49, 53, 54
Entry 246, 247, 248, 249, 259, 281, 287
Entry point 29, 64, 124, 141, 169
– driver’s 168
– standard 25, 26
Entry point function 125
Entry Point Structure. See EPS
EntryPointStructureChecksum Checksum

97
Enumerated values following 279, 280
En-US 200, 201, 202, 204, 205, 206
Environment 15, 16, 18, 48, 74, 234, 256
Environment variable lasterror 208, 225
Environment variable name 130, 132, 151,

225, 264
Environment variable value 225, 264
Environment variables 107, 127, 225, 234,

236, 256, 284
– change UEFI Shell 225
– shellsupport 22, 189
– specified 239, 243, 264, 284
EnvironmentVariables 256
EnvKey 264, 284
Env-var-name 127, 128
EPS (Entry Point Structure), 88, 96, 97, 102
Eq 140, 148, 211, 212
Error 64, 118, 130, 143, 176, 224, 276
Error code 117, 118, 142
Error levels 176, 177
Error mapping functions 212
Error message 112, 114, 117, 118, 132, 160,

161
ErrorLevel 176, 177
ErrorLevel parameter 176
Event 10, 73, 75, 133, 177, 240
Evolution 13, 33, 90

  Index

Example 168, 170, 171, 172, 173, 174, 175
Example exercises 168
Example Function Declaration 36
Example script file 107
Example usage 187
Executable file 185
– signed 185
Executable file contents 185
Executable structure description detailed

182
Executables 17, 35, 42, 119, 181
Execute UEFI Shell 22, 24
Executes 17, 107, 110, 111, 237, 238, 255
Execution 26, 107, 109, 110, 216, 221, 235
– command directs script file 209
– suspends script file 221
Execution Environment 33, 34, 36, 38, 40,

42, 44
ExecutionBreak 133, 240
Existing devices 217, 218
Exit 116, 191, 258, 259, 272, 278, 279
Exit-code 208
Expressions 139, 146, 176, 211, 213
Extensible Authentication Protocol (EAP), 57,

58, 59, 60
Extract 62, 72, 113, 114, 115

F
Factory 7, 47, 181
Failure 43, 50, 85, 86, 250, 254, 255
FALSE 63, 66, 252, 258, 259, 270, 271
FAT parameters 200
FAT16, 80, 81
FE 80, 81, 83
FFS 35, 36
Field width 288
File 238, 242, 254, 257, 258, 259, 281
– build description 138
– empty 207
– first 242, 261
– help 115, 116, 118, 276
– hidden 216
– inf 139
– list of 238, 246, 275
– multiple 215, 229
– next 242, 262
– open 242, 265
– specified 117, 118, 204, 205, 238, 239,

272

File Access Date 113, 114
File Creation Date 113, 114
File extensions 242, 260
File formats 123, 154
– fully-qualified Portable Executable Com-

mon Object 60
File information 190, 191, 240, 242, 262,

265, 274
– returned 265
– updated 282
File I/O 6, 241
File I/O Functions 241
File I/O support functions 241
File Modification Date 113, 114
File name 113, 194, 196, 208, 242, 260, 273
– given 241
File parameter 229
File path 171, 240, 253, 272, 273, 274
– driver’s 204
– executable 28
– specified 242
File position 159, 257, 258, 259
File size 160, 161
File System Abstractions 30
File system intermediary 41
File System I/O 52
File system mappings 52, 196
File system path 195, 239
File system protocol 217
File system structures 253, 255, 261, 262,

263, 282, 283
File system style name 239
File systems 50, 51, 52, 57, 217, 230, 231
– current 196, 197, 230
– current working 236
– multiple 49
– selected 243
– specified 243, 263
File Transfer Protocol. See FTP
File truncates 226
File type 156, 158, 230
FILE2, 35
File/directory 224
FileExtension 260
FileHandle 253, 254, 266, 271, 272, 273,

281
FileInfo 114, 115, 193, 282
FileInfo row type 114
Filename 77, 210, 233, 255, 259, 260, 273

 Index  

File-name 128
Filename argument 211
Filename expansion 233
Filename for compressed input file 207
Filename for compressed output file 207
Filename for decompressed output file 207
Filename for uncompressed input file 207
FilePath 271, 272
FilePathName 28
File’s File attributes 272, 273
File’s information 239
– first 260
– next 262
File’s size 266, 267
Files to display 113, 230
Files/directories 224
File-system 29
File-System Abstractions 29
File-system protocol simple 32
File-systems recognized 30
FindTarget 251, 252
Firmware 11, 47, 50, 59, 60
Firmware interfaces underlying UEFI 23
First file name 197
Flag 131, 132, 198, 199, 243, 248, 289
Flag parameters 248
Flash 33, 34, 48
FLASH device 5, 48
– platform’s 16
– unprotected 181
Flash ROM 34, 35, 37, 42
ForceHex 252, 271
Format 197, 200, 203, 235, 275, 277, 288
Format Strings 275, 288
Formatted area 90, 97
Formatted section 89, 91
FreeForm type response 279, 280
Freeing 260, 265
Fs0, 168, 170, 171, 172, 173, 174, 175
– blocks of 80
FTP (File Transfer Protocol), 48, 62, 68
FTP utility 63, 67, 68
FTP+UEFI Shell integrated 68
Func 167, 221, 222
Function 133, 134, 238, 239, 240, 241, 261
– underlying 29, 31
Function changes 239, 284
Function Description 241, 242, 243, 244,

245

Function flushes 238, 262
Function Name 241, 242, 243, 244, 245
Function number 203, 222
Function ParseCommandLine 130
Function pointers 10
Function prompts 278, 279
Function sets 131, 240, 282, 283, 285
Function ShellConvertStringToUint 153
Functionality 3, 16

G
GetControllerName 166, 172
GetDeviceName 238
GetDriverName 166, 171
GetFileSize 159, 160, 161, 239
GetKey 113, 126, 127, 129, 131, 134, 137
GetKey sample application 115
Globally Unique Identifier. See GUID
Goto 64, 65, 66, 67, 107, 113, 114
Gt 114, 149, 211
GUID (Globally Unique Identifier), 35, 64, 86,

123, 124, 191, 226
Guid var-guid 204

H
HANDLE FileHandle 262, 265, 266, 281,

282, 283, 286
Hard drive partition 195, 196
Hardware 1, 49, 50, 71, 72, 85, 86
Hardware Access 50, 51
Header 27, 35, 88, 95, 97, 98, 185
Header File Name 95
Header file Uefi 122
Header files 63, 124, 125, 140
HelloWorld 119, 120, 121, 123, 124, 125, 126
HelloWorld UEFI Shell application 154, 164
Hexadecimal 195, 196, 203, 217, 224, 245,

252
Hexadecimal bytes 210, 226, 227
Hexadecimal characters 252, 270
– valid 270
Hexadecimal number 198, 200, 202, 203,

205, 206, 223
HII (Human Interface Infrastructure), 3, 70,

71, 277, 280
HII unique 74, 75
HiiFormatStringId 277
HiiHandle 101, 104
HiiPromptStringId 280

  Index

HOB 35
Host-bus adapter (HBA), 42
Human Interface Infrastructure. See HII
Hypervisor 11, 13

I, J
IEPS (Intermediate Entry Point Structure), 97
Ifconfig 191, 214, 215
Image 9, 18, 41, 60, 62, 169, 230
ImageHandle 27, 28, 63, 64, 256
Imaging 41
Implementations 9, 48, 124, 189
Index 66, 100, 133, 196, 200, 249
Index variable 111, 208
Indexvar 208, 209
Industry 1, 6, 18, 86, 90, 105
Inf 121, 123, 125, 137, 138, 154, 163
Inf Component Information File 126
Infile 207
Info 36, 241, 246, 261, 265, 281, 282
Information 47, 86, 88, 91, 113, 114, 202
– 32-bit Memory Error 227
– asset 43, 87
– decode 201
– detailed 96, 173
– display device 201
– display header 91
– display SMBIOS structure 91
– display structure 91
– help 209, 210, 239
– image-related 72
– returning string 90
– system time zone 192
– system’s time zone 229
– usage 209, 210
– version 192, 230
Infrastructure 11, 17, 18, 72, 86, 237
– underlying 15, 20
Init 64, 101, 177
Init SMBIOS structure table address 101
Initial FTP shell application 64
Initialize log file 64
InitializeApp 27, 28
InitializeMiniFtp 63, 64
Initializes 1, 3, 34, 37, 38, 64, 176
Input 128, 155, 156, 158, 278, 279, 280
Input command line parameters 92
Input file 112, 156, 158, 159, 160
Input file name 157

– next 113
Input parameters 9, 65
Input redirection 235
Install 31, 35, 36, 43, 74, 75, 115
Install Script 115, 117
Install services 74, 75
InstallCmd command-name target-directory

115
INT32, 275, 277
Integrity 181
Interact 20, 21, 22, 23, 25, 26, 73
Interactions 19, 20, 24, 58, 71, 75, 76
– basic 76, 79
– remote 75
Interactive Shell Environment 22, 23, 25,

27, 29, 31
Interfaces 4, 36, 37, 72, 73, 214, 215
– command-line 4, 5, 6
– consistent shell/command-line 67
– file-system 29
– plug-and-play function 87, 88
– programmatic 3, 4, 5, 233, 237
– specified 214, 215
Intermediate Entry Point Structure (IEPS), 97
IntermediateChecksum Checksum of Inter-

mediate Entry Point Structure 97
Interpreter 6, 22
Interprets 99
INVALIDE 104
I/O devices 33
IP address 60, 62, 222
Ip4, 214, 222
IPMI Device Information 228
IPv 191
IPv4, 56, 59
IPv6 network infrastructure 3
ISCSI 57
Isint 211, 212
IsIPv4, 66
IsRootShell 239

K
KEK.crt 187
Key 114, 130, 132, 133, 135, 248, 249
– private 60, 181, 183, 187
– public 60, 184
Key data structures 95
Key engineers 54
Key text 128, 130, 134, 135, 136

 Index  

Keyboard Input in UEFI Shell Scripts 126,
127, 129, 131, 133, 135, 137

KeyString 248, 249
Keyword 111, 198

L
Label 109, 110, 113, 191, 209
Lang 200, 201, 202, 204, 205, 206
Language 6, 200, 201, 202, 204, 205, 277
– current platform 201, 202, 204, 205, 206,

277
– default 171, 172
Language codes 44, 200, 201, 202, 204,

205, 206
LANs (local area networks), 58
Largest SMBIOS Structure 97, 102
Last sector 30
Lasterror 29, 116, 118, 212, 236
LastError environment variable 28, 29
Launch 1, 3, 4, 22, 24, 31, 44
Launch commands 24
Launch drivers 70
Launch UEFI applications/drivers 22
Launch UEFI Shell applications 22
Launching 1, 15, 16, 22, 24, 25, 31
Layer 30, 57, 59, 85
Lba 80, 200
Length 88, 90, 98, 103, 104, 208, 252
Length field structure’s 90
Length of return buffer in bytes 103
Levels 16, 49, 50, 117, 176, 177, 189
Leverage 6, 10, 17, 18, 21, 73, 76
LibGetSmbiosString 104
Library 49, 50, 123, 124, 126, 139, 163
Library class 124, 139
Library function StrCmp 144
Library header file 250
LibSmbios 95, 100
LibSmbiosView 100, 101, 104
Lines 111, 113, 118, 123, 130, 146, 148
– next 221, 259
– single 257, 258
Linux 41, 48, 54
List 98, 111, 113, 244, 246, 249, 250
– package 277, 280
List of information 190, 204
ListHead 246, 274, 275
Load 166, 167, 168, 169, 191, 204, 215
Load command 168, 171

Loaded image protocol 9, 169, 195
LoaderCode 79
LoaderData 79
LOADFILE 177
Loadpcirom 167, 168, 216
LoadPciRom command 168
Location 17, 58, 86, 197, 275, 277
Log 49, 63, 93
Log file 63, 65, 67
– name of 65, 67
LogFilename 63, 64, 65, 66, 67
Logical block address 41, 43, 200
Logical size 113, 114, 115
Loop 65, 111, 113, 131, 191, 208
Ls 7, 113, 114, 117, 191, 193, 216
LS command 23, 107, 113, 114, 115, 202
Lsgrep.nsh 107, 114
Lspa 171, 172
Lt 114, 148, 211

M
Machine 33, 40, 41, 44, 45, 55, 62
Macros 22, 26, 175, 176, 177, 179, 250
Managed Network Protocol (MNP), 57
Management Device 228
Managing 75, 170, 173, 174, 204
Managing UEFI Drivers 165, 166, 168, 170,

172, 174, 176
Man-in-the-Middle (MITM), 60, 181
Manufacturing 41, 47, 48, 50, 52, 54, 205
Manufacturing lines 7, 48, 49, 50
Manufacturing process 48, 49, 52, 53, 54
Manufacturing Test Tools 49
Manufacturing tools 47, 49, 50, 51, 54
– converting 53, 54
Map 17, 85, 96, 117, 191, 193, 217
Mappings 139, 191, 217, 218, 238, 239, 240
– default 217, 218
– file-system 239
Mappings of existing devices 217, 218
Master Boot Record (MBR), 200
Match 113, 233, 234, 238, 239, 274, 275
– parameter string 212
Math 139, 140, 141, 143, 145, 152, 153
Math Expressions 139, 141, 143, 145, 147,

149, 151
MaxStructureSize 97, 103
MBR (Master Boot Record), 200
Md 116, 118, 193, 218

  Index

Mechanism 70, 73, 177, 178
Media 29, 30, 253, 255, 261, 262, 282
– bootable 17
Medium 253, 254, 255, 263, 272, 274, 283
MEM 35, 82, 176, 191, 193, 218, 219
Members 96, 97, 98, 99, 100, 133, 134
Memmap 79, 167, 191, 218
Memory 9, 24, 33, 35, 49, 79, 82
– block of 263
Memory Address 81, 82
Memory allocation 10, 35, 167, 250
Memory Device Mapped Address 228
Memory Module Information 227
Memory region 210
Messages 57, 58, 118, 119, 177, 183, 206
– informational 176, 177
Methods table-based 87, 88
Migration 44, 45, 85
Miniftp 63, 64, 65, 67
Miscellaneous Functions 242, 243
MITM (Man-in-the-Middle), 60, 181
Mkdir 117, 118, 189, 191, 193, 218, 219
MMIO 81, 82, 203, 219
MNP (Managed Network Protocol), 57
Mobile Internet Device 55
Mod 151, 194, 196
Mode 35, 220, 224, 271, 272, 273, 275
– console output device’s 191
– page break output 238
Modules 33, 34, 35, 94, 123, 175
– executable 34
MSDOS5.0, 80, 81
MSmbiosStruct 100, 101, 102, 104

N
Name 123, 214, 215, 231, 257, 269, 270
– command’s 193
– human-readable 171, 172
– mapped 217
– mapping 200, 217
– unique 29, 30, 73, 118
Name auto 215
Name dhcp 214
Name of file to edit 210
Nc option 168, 202
NeedLog 63, 66, 67
Network 57, 58, 59, 60, 62, 181, 191
Network boot 41
Network interface controller (NIC), 42, 56, 57

Network server 48, 49
Networking stack 56, 57
New component information 121
New file 207, 238
– empty 238
New file name 196
NewPackageList 74, 75
NewSize 251, 252
NewString 251, 252
Nextparm 112, 113
NIC (network interface controller), 42, 56, 57
NoFile 261, 262
Nominal Value field 90
Non-Script-based Programming 237, 239
Non-volatile 130, 236, 284
Nsh 107, 108, 109, 110, 112, 119, 120
Nth instance 221
Null 91, 252, 253, 259, 260, 263, 264
Null-terminated string 248, 249, 260, 264,

269, 276, 284
Null-terminator 227
Number 196, 203, 204, 205, 206, 267, 286
– large 1, 45
– maximum 198, 200, 288
– valid 245, 271
NumberOfSmbiosStructures 103
NumberOfSmbiosStructures Total number of

structures 97
Numbers output 205, 206
Num-of-Structures 88
NumStructures 102, 103
Nv 226, 236

O
Oemerror 211, 212
Opened file 32, 271, 272, 273, 275, 282,

286
Openinfo 173, 191, 220
OpenInfo command 173
OpenInfo DeviceHandle 167
OpenInfo DeviceHandle Shell 167
OpenMode 272, 273, 274, 275
Operating system 1, 7, 13, 15, 41, 55, 70
– traditional 29
Operating system loaders 3, 37, 38, 42
Operations 20, 69, 70, 71, 72, 279, 281
Operators 145, 146, 148, 149, 150, 152, 211
– higher priority 146
– unary 151, 152, 153

 Index  

Option file 195
Option filename 195
Option number 195, 196
Optional pointer 250, 256, 264
Options existing 196
OS-present application 185
Outfile 207
Output 107, 111, 113, 126, 192, 234, 256
Output file names 112, 113, 155, 157, 158
– missing 112
Output files 155, 156, 158, 159
Output redirection 234
Outputfile 112, 113

P
Packages 124, 126
Page break mode 243, 285
Param 246, 247, 250, 289
Parameter Description 240
Parameter passing 233
Parameter string 212
Parameters 66, 110, 111, 246, 250, 284, 289
– echo 109, 110
– first 28, 233
Parentheses 140, 153
Parse 144, 145, 146, 148, 192, 193, 221
Parse Command Line in GetKey 131
Parse shell command 193
Parse UEFI Shell command description 193
ParseArgs 63, 64, 65
Parsed command-line arguments 248, 249
ParseExpr 142, 143, 144, 146, 148, 153
ParseExprTerm 146, 153
Parsing 142, 143, 145, 150, 153, 155, 221
Parsing functions 143, 144, 145
Parties 3, 37
Partition 30, 51, 52
Path 116, 119, 197, 237, 269, 270, 274
– complete 260
Path environment variable 17, 118, 119, 242,

259, 260, 270
Pattern 49, 113, 210, 229
Pause 17, 117, 119, 133, 192, 221
PC/AT BIOS 85
PCI 36, 52, 83, 178, 179, 203, 219
PCI configuration space 79, 191, 192, 203,

219, 222
PCI devices 192, 221, 222
PCI I/O Protocols 178, 179, 180

PCI option ROM image file 216
PCI Root Bridge I/O 178, 179, 180
PCI Root Bridge I/O Protocol 178
PCI shell commands 13
PCIE 82, 83, 203, 219
PciRootBridgeIo 178, 179
PCR (Platform Configuration Registers), 59
Pdf 8, 9, 14, 15, 46, 47, 84
PE (Portable Executable), 60, 182
PE/COFF 6, 60
PEI 34, 35, 36, 37, 42
PEI core services 35
PEI Modules. See PEIMs
PEI Services Table 35, 36
PEI Services Table and Example Function

Declaration 36
PEIMs (PEI Modules), 35, 36
PEntryPointStructure 102
Peripherals 39, 47, 50, 55
Phases 1, 69, 70
Phases of operation 69, 70
PHead 102
Physical base address 102
Physical Size 113, 114
PI. See platform initialization
PI specifications 12, 15, 52
Pierror 211, 212
Ping 192, 222
Piping 233, 234
Placeholders 288
Platform 7, 18, 38, 70, 71, 72, 75
– client 56
– headless 72
Platform behavior changes 71
Platform Configuration Registers (PCR), 59
Platform firmware 37, 38, 181, 182
Platform initialization (PI), 1, 3, 11, 69, 85,

212
Platform Initialization Flow 34, 35
Platform manufacturers 43, 85, 86
Platform state 37, 38
Platform supplier (PS), 37
Platform vendors 16
Plurality 59, 62, 86
Point UEFI 41
Pointer 99, 247, 249, 260, 263, 264, 272
– array of 122, 144, 145
– current protocol 268
Pointing Device 228

  Index

Portable Executable (PE), 60, 182
Portion 34, 37, 195, 196
– formatted 90, 91
Position 44, 193, 240, 249, 266, 283, 284
– current 239, 242, 266, 281, 283
Positional parameters 233
POST card 178
PPI 35, 36
Pragma pack 95, 96, 97
Pre-OS state 33, 44
PrintCommandText 276
PrintToken 101, 104
PrintUsage 63, 64, 67
Priority 144, 146
ProblemParam 250, 251
Process 6, 48, 50, 53, 72, 183, 184
– executable load 182
Process script parameters 227
Processing 22, 111, 148, 149, 155, 186
Production build 175, 176
Profile 116, 118, 119, 189, 190, 191, 192
Profile names 118, 119, 189, 212, 237
PROGRAM.EFI success echo 236
Programmatic Shell Environment 16, 19, 21
Programming Reference 233, 234, 236,

238, 240
Programs 24, 25, 132, 134, 176, 234, 235
Prompt 127, 128, 132, 199, 278, 279, 280
Protocol database 10
Protocol interfaces 173
Protocol services 10, 26, 29
Protocol-id 202
Protocols 9, 26, 27, 30, 31, 166, 167
PROTOCOLShellParameters 28
Prototype 246, 247, 249, 257, 261, 264, 265
Provisioned Material 69, 70, 72, 74, 76, 78,

80
Provisioning 47, 50, 55, 62, 75
PS (platform supplier), 37
PSK (pre-shared key), 59
Ptal 81
Purpose UI designs 72
PXE 44, 58, 62
PXE Boot 57, 58

Q
Query 62, 76
Quit 278, 279, 280, 281
Quotation marks 108, 109, 208, 240

R
Rack 40, 44, 45
RAID (Redundant Array of Independent

Disks), 45
Raw 38, 99, 101, 104
Raw system board 38, 39
Readiness 41, 43
ReadKey 130, 134
ReadKeyStrokeEx 134
Read-Only (RO), 194, 220, 224, 236, 237,

254, 255
Read-only memory (ROM), 33, 67, 68
ReadSize 281, 282
Read-Write (RW), 236
Recommended Fashion 74
Reconnect 169, 170, 171, 223
Reconnect commands 170, 171, 173
Reconnect console devices 203
Reconnect DeviceHandle 167
Redirect 113, 150, 224, 234
Redirection 107, 211, 233, 234
Redundant Array of Independent Disks

(RAID), 45
Relationship 9, 10, 20, 34
ReplaceWith 251, 252
Request 24, 32, 71, 76, 278, 280, 284
Required structures and data 91
Reset 17, 36, 71, 209, 218, 223, 236
ResetSystem 52, 223
Resources 36, 250, 254, 255, 256, 273, 274
Response 3, 62, 192, 278, 279, 280
Result 142, 143, 146, 150, 152, 224, 286
– structure’s length 90
Resulting answer 244, 278, 279
Return 132, 134, 135, 144, 146, 244, 279
– shell library 289
– successful 251, 252
Return DMI 103, 104, 105
Return EFI 66, 101, 268
Return SMBIOS structure table address 102
Return SMBIOS Table address 102
Return Status 28, 64, 65, 67, 101, 129, 235
Return type SHELL 134
Return Values 248, 249, 260, 263, 264,

265, 267
Returned parameter value 247
Returned status 29, 256
Revision 81, 97, 102, 237
Revolution 13

 Index  

RO. See Read-Only
ROM (read-only memory), 33, 67, 68
ROM image 168, 216
Romfile 216
Routine Description 64, 65, 67, 101, 102,

103
Row specified 244
Runtime 11, 26, 27, 41, 43
Runtime and boot services 26
Runtime services 10, 81, 122

S
SAP (Security Architectural Protocol), 186
Scenarios 44, 55, 56, 57, 58, 68, 85
Screen 107, 108, 198, 200, 201, 203, 285
Script commands 24, 190, 206
– block of 107, 111, 191
– if available 119
Script exits 112, 117, 118
Script files 20, 21, 22, 24, 206, 207, 209
Script positional parameters 192
Script Shell Environment 16
Script-based Programming 233, 235
ScriptFileName 63, 64, 66
Scripting 1, 9, 17, 22, 29, 76, 117
Scripting language 6, 48
Scripts 22, 24, 76, 107, 108, 118, 191
– hello World 120
– name of 65, 67
SCSI 52
Search 28, 29, 209, 236, 259, 260, 261
– parse command 115
Searching 233, 242, 259, 260
Section sectionname 210
SectionToGetHelpOn 276
Security 68, 182, 185
Security Architectural Protocol (SAP), 186
Security Considerations 181, 182, 184, 186
Segment 219
Serial ports 177, 224
– specified 224, 225
Sermode 224
Server 43, 55, 59, 62
Server area network (SAN), 41
ServerIpConfigured 66
Services 9, 27, 36, 172, 174, 175, 178
– console 133
– database 71
Set command 225

Set output attribute 275, 277
Set shell command 119, 236
Sets top nibble 212
Settings 45, 71, 76, 121, 189, 225, 226
Sfo 113, 197, 200, 202, 204, 216, 218
Shell 7, 15, 16, 77, 78, 82, 167
Shell application source code 121
Shell applications 6, 16, 21, 25, 86
– output UEFI 123
Shell clients 19
Shell command cls 275, 277
Shell command line 210
Shell command parameters 94
Shell command profiles 189
Shell command source code 121
Shell commands 114, 115, 117, 118, 119, 121,

235
– existing UEFI 193
– lists UEFI 166
– new 107, 237
– new UEFI 115
– specified 117, 118
Shell environment 18, 22, 23, 24, 26, 237,

240
– given 189
– running 189, 237
– underlying UEFI 25
Shell Environment Variables 236
Shell executables 119
Shell features 19, 238
Shell interfaces calling programmatic UEFI

23
Shell level value 189
Shell library 155, 243, 268
Shell parameters 107, 250, 289
Shell Parameters Protocol 26, 28, 237, 240
Shell Parameters Protocol Functions 240
Shell profiles 189
– installed 118
Shell prompt 278, 279
Shell protocol 6, 20, 127, 133, 155, 237, 238
Shell protocol function SetEnv 130
Shell Protocol Functions 20, 238
Shell protocol instance 128, 139
Shell Script Appear 119
Shell Script Interpreter 23
Shell Script Resolves 31
Shell scripts 16, 107, 193
– current UEFI 191, 208

  Index

– launching UEFI 22
Shell Specification 4, 6, 85, 165, 197
Shell support underlying platform 18
Shell support levels 16, 117, 189
Shellbook 115, 116, 118
ShellCEntryLib 124, 139, 141
ShellCloseFile 241, 245
ShellCommand 114, 221
ShellCommandLineCheckDuplicate 246
ShellCommandLineCheckDuplicate Detect

243
ShellCommandLineFreeVarList 247
ShellCommandLineGetCount 247
ShellCommandLineGetFlag 243, 248, 249
ShellCommandLineGetRawValue 249
ShellCommandLineGetValue 248, 249
ShellCommandLineGetValue Return 243
ShellCommandLineParse 244, 250
ShellCommandLineParseEx 244, 247, 250
ShellConvertStringToUint 245, 252, 267,

285
ShellCopySearchAndReplace 245, 251
ShellCreateDirectory 241, 253
ShellDeleteFile 241, 254
ShellDeleteFileByName 254
ShellDeleteFileByName Deletes 241
ShellExecute 243, 255, 256
ShellFileExists 241, 257
ShellFileHandleReadLine 241, 258
ShellFileHandleReturnLine 241, 257
ShellFindFilePath 242, 259, 260
ShellFindFirstFile 242, 260, 261
ShellFindNextFile 242, 261
ShellFlushFile 242, 262
ShellGetCurrentDir 243, 263, 264
ShellGetEnvironmentVariable 243, 264
ShellGetExecutionBreakFlag 243, 265
ShellGetFileInfo 242, 265
ShellGetFileSize 242, 266
ShellHexStrToUintn 245, 267
ShellInitialize 243, 268
ShellIsDecimalDigitCharacter 245, 268
ShellIsDirectory 242, 269
ShellIsFile 242, 269
ShellIsFileInPath 242, 270
ShellIsHexaDecimalDigitCharacter 245, 270
ShellIsHexOrDecimalNumber 245, 271
ShellLib 139, 141
ShellOpenFile 242

ShellOpenFileByDevicePath 242, 271
ShellOpenFileByName 242, 273
ShellOpenFileMetaArg 241, 274
&ShellParameters 28
ShellPkg 121, 124, 139
ShellPrintEx 244, 275
ShellPrintHelp 244, 276
ShellPrintHiiEx 244, 277
ShellPromptResponseAll 279, 281
ShellSetEnvironmentVariable 284
ShellSetEnvironmentVariable Changes 243
ShellSetFileInfo 242, 282
ShellStrToUintn 245, 285
Shellsupport 115, 117
ShellWriteFile 242, 286
Shift 107, 109, 110, 112, 117, 192, 227
Shifts positional command-line parameters

107
Sign 181, 185, 186
Signature 61, 176, 183, 184, 185, 186
Signed Executable Overview 182, 183
Signed Executable Processing 185
Signed UEFI Executable 182, 183
SignTool 185, 186, 187
Simple File System 52
Simple Network Protocol (SNP), 57
Simple Standard Application 124, 125
Simple Text Input 128, 134, 135
Simple UEFI Shell Application 121, 123
Simple UEFI Shell Application Component In-

formation File 123
Simple UEFI Shell Application Source Code

122
Smbios 95, 96, 97, 98, 99, 100, 102
&Smbios 104
Smbios members of 97, 98, 99
SMBIOS core driver 88
SMBIOS data 87, 101
SMBIOS Information 88, 102, 103, 227
– system’s 192
SMBIOS specification 87, 88, 90, 91, 97
SMBIOS Structure Table 97, 100
SMBIOS structures 87, 88, 89, 90, 91, 97,

98
SMBIOS table 86, 87, 88, 92, 94, 96, 101
SMBIOS Table Organization 87, 89
Smbios Utility Components Architecture

94, 95
SmbiosEnd.Raw 104

 Index  

SmbiosHandle 227, 228
Smbios.Hdr 104
Smbios.Raw 104
SmbiosType 227
SmbiosView 87, 88, 91, 92, 93, 101, 227
SmbiosView display 92, 192
SMBIOSVIEW shell command 92
Sname 217, 225
SNP (Simple Network Protocol), 57
Software components 33
Solutions 17, 18, 68, 179
Source 47, 220, 234, 235, 245, 287, 288
Source Code 100, 101, 103, 121
Source File 121, 123, 124, 127, 155, 163, 199
Source file name 221
Source file/directory name 220
SourceString 251, 252
Source.txt 31, 32
Spaces 7, 208, 211, 214, 217, 251, 252
Specification 4, 5, 69, 85, 86, 87, 90
Specified file name 269
Src 199, 220
Ss 83, 219, 228
Standard Entry description 27, 28
Standard Error 27, 121, 234
Standard format output 192, 193, 200, 201,

202, 218, 219
Standard input 27, 117, 121, 234, 235, 240
Standard mode diagnostics in 78, 79, 206
Standard output 113, 117, 128, 130, 190,

192, 234
Standard UEFI data type 130
Standard UEFI driver/application 21
Standard-format output 113, 114, 115, 197,

204, 205
Start 166, 167, 168, 169, 170, 208, 209
Start UEFI drivers 167
STATIC SMBIOS 100
Statistics 92, 95, 99, 100
Statistics information display structure ta-

ble 91
Status 28, 64, 66, 101, 178, 179, 256
Status code 36, 134, 256
Status Codes Returned 246, 247, 252, 253,

262, 269, 276
Step 70, 71, 74, 75, 76, 208, 209
Stop 166, 167, 170, 185
Stop bits 224, 225
Storage devices 5, 29, 52

STR 101, 104
Strcpy 65, 66, 124
String 90, 211, 245, 251, 252, 271, 277
– empty 284
– printf-style 244
– quoted 6, 193, 195, 196
– specified 275, 277
– user-typed 278, 280
String fields 91
String Functions 244, 245
String identifier 277, 280
String-containing example 91
Structure data 103, 104
Structure Evolution 90, 91
Structure header 99, 100
Structure Standards 89
Structure table 88, 90, 97, 98
Structure Table Address 97
Structure table start address 100
Structure type 89, 98, 99, 100
Structures 88, 90, 91, 95, 96, 99, 100
– last 88
– members of 100
– next 103, 104
– table 97
StructureSize 102, 103
Structure-termination examples 90
Subdirectories 199, 216, 220, 224, 229
Subsystem 52
Success 65, 101, 103, 246, 252, 253, 262
Support 16, 17, 18, 21, 22, 174, 217
– basic scripting 16, 117
– command piping 235
– inherent 72
– underlying UEFI Shell’s function 16
Support file information 283
Support levels 22, 76, 117, 189
– given shell 189
Syntax 112, 113, 127, 154
System 7, 27, 50, 53, 72, 73, 75
– contents of 190, 191
System board 33, 34, 37, 39, 55
System files 216
System firmware 55, 223
System information 91, 227
System operation 74, 75
System reset 70, 113, 130, 223
System Table above-referenced UEFI 27
SystemTable 27, 28, 63, 64

  Index

T
Table 27, 95, 96, 97, 99, 100, 235
Table entry point 87
Table header 88
Table Name 192, 193
Table organization graph 88
TableAddress 97, 101, 103
TableLength 97, 103, 104
Tag 29, 30, 115
Target directory 115, 116, 117, 118, 119
Target file 199, 226
Target-ip 222, 223
TCP (Transmission Control Protocol), 56, 62
Testing 47, 48, 49, 52, 166, 170, 174
Tests 49, 50, 52, 53, 166, 167, 174
– subsystem functionality 47
Text 72, 94, 126, 128, 130, 135, 136
– text I/O functions display 244
Text files 112, 115
– new 107, 112
Text strings 88, 90, 91, 97, 137, 208
Text-mode VGA display 179
Text-Mode VGA Frame Buffer 179
TFTP (trivial file transfer protocol), 48, 62, 63
Time 49, 52, 54, 117, 200, 228, 229
– current 192, 228, 229
Time commands 117
Timezone 17, 117, 192, 229
TNC (Trusted Network Connect), 59
ToExit 63, 65
Token 101, 104, 144
Tools 48, 53, 54, 87, 187, 192
TPMs (Trusted Platform Modules), 45, 59, 62
Transmission Control Protocol. See TCP
Trivial file transfer protocol (TFTP), 48, 62,

63
Trivial File Transport Protocol 62
Truncates 226, 258, 259
Trusted Network Connect (TNC), 59
Trusted Platform Modules (TPMs), 45, 59, 62
Type 22, 88, 124, 176, 205, 217, 278
Type command outputs 113
Type commands 4
Type EFI 129, 130
Type parameter 278, 279
Type SHELL 129
Type0, 98
Type1, 98

U
UCS-2, 155, 159, 160, 161, 227, 230
UCS-2 and ASCII file types 207
UDP (user datagram protocol), 56, 62, 63
UEFI 24, 26, 49, 53, 59, 62, 85
UEFI abstracts 52
UEFI abstracts access 52
UEFI APIs 10, 37
UEFI app 27, 28
UEFI application/driver 196
UEFI applications 9, 24, 25, 122, 123, 236,

237
– standard 6, 119
UEFI BIOS interfaces 21
UEFI boot manager 119, 120
UEFI Boot services 12, 27
UEFI client 55, 59, 60, 62
UEFI Component Name protocol 201
UEFI Compression algorithm 190
UEFI configuration infrastructure 3, 69, 70,

72, 73
UEFI Driver Configuration protocol 190
UEFI Driver Diagnostics protocol 190
UEFI driver entry 168
UEFI driver executes 179
UEFI driver files 168
UEFI driver image 168
UEFI driver image EfiDriver.efi 168
UEFI Driver Model 170, 171, 172, 173, 190,

200, 201
UEFI drivers 168, 169, 170, 171, 172, 173,

174
– networking 56
UEFI drivers in option ROMs and operating

system loaders 37
UEFI environment 25, 26, 29, 30, 190, 191,

218
UEFI file image 18
UEFI firmware 55, 56, 60
UEFI firmware services underlying 26
UEFI for Diagnostics 85, 86, 88, 90, 92, 94,

96
UEFI Forum 2, 4, 12
UEFI functions 125
UEFI implementation 12, 186
UEFI infrastructure 19, 70, 71
– underlying 19
UEFI IP4 and UEFI IP6 stack applications 57
UEFI IP6 stack applications 57

 Index  

UEFI IPv4 network stack 214, 222
UEFI IPv6 network stack 222
UEFI libraries 125, 244
UEFI Load Image 186
UEFI LoadImage 9
UEFI Networking Stack 49, 56
UEFI platform initialization 11
UEFI protocol definitions 127
UEFI protocol services 9
UEFI protocols 29, 30, 71, 133
UEFI PXE application 60
UEFI script 23
UEFI service 20, 237
– appropriate 85
UEFI services basic 124
UEFI Shell 5, 6, 7, 9, 16, 18, 49
– current 240
– underlying 21
UEFI Shell APIs 6, 241
UEFI Shell application entry point 142
UEFI Shell applications 12, 21, 48, 52, 121,

124, 193
UEFI Shell Binary Integrity 181
UEFI Shell command Connect 168, 169
UEFI Shell command profiles 237
UEFI Shell commands 20, 21, 113, 165, 167,

192, 236
UEFI Shell environment 28, 29, 31, 32, 190,

191, 237
UEFI Shell environment interfaces 20
UEFI Shell environment variable 128, 192
UEFI Shell environment’s initialization 29
UEFI Shell for diagnostics 85
UEFI Shell for provisioning 55
UEFI Shell for SMBIOS 105
UEFI Shell implementation details 126
UEFI Shell infrastructure 21, 24
UEFI Shell initialization 30
UEFI Shell interfaces and UEFI BIOS inter-

faces 21
UEFI Shell interpreter 22, 24
UEFI Shell Levels of Support 17
UEFI Shell Library 241, 242, 244, 246, 248,

250, 288
UEFI Shell profiles 118
– custom 118
UEFI Shell Programming 121, 122, 124, 126,

128, 130, 132
UEFI Shell programming environment 233

UEFI Shell programs 6
UEFI Shell prompt 16
UEFI Shell protocol 242
UEFI Shell script commands 20
UEFI Shell script name 233
UEFI Shell Scripting 107, 108, 110, 112, 114,

116, 118
UEFI Shell Scripts 126, 127, 129, 131, 133,

227, 233
UEFI Shell script’s positional parameters

227
UEFI Shell searches for shell scripts 107
UEFI Shell services 19, 141
UEFI Shell shares 49
UEFI Shell signals 133
UEFI Shell Specification 117, 118, 193, 201,

202, 204, 205
UEFI Shell specification codifies usage 86
UEFI Shell specification for details 200, 218
UEFI Shell Sub-team 3
UEFI Shell Support Levels 16, 115, 117
UEFI Shell usage models 19
UEFI Shell utility 100
UEFI Shell version 230
UEFI Shell’s resources 127
UEFI Shell’s scripting language 5
UEFI Shell’s shellsupport level 18
UEFI Simple File 20
UEFI Simple File System 194
UEFI Specification 3, 37, 181, 201, 204, 218,

237
UEFI specification driver model 24
UEFI StartImage 9
UEFI system partition 37, 38, 42, 68, 181
UEFI System Table 9, 10, 86, 133, 203, 230
UEFI systems 17, 30, 85
UEFI variables 11, 190, 192, 194, 198, 204,

226
UEFI-compliant 3, 15, 24, 25
UEFI-compliant system 5
UefiError 212
UefiLib 124, 139, 141, 275, 277
– library header files 122
UINT8, 90, 99, 101, 103, 104, 178, 179
UINT8 EntryPointStructureChecksum 95
UINT16, 102, 103, 104
UINT16 Handle 97, 99
UINT16 NumberOfSmbiosStructures 96
UINT64, 252, 266, 272, 273, 274, 283

  Index

UINTN 247, 249, 251, 267, 285, 286, 287
UNDI (Universal Network Device Interface),

57, 177
Unicode 154, 155, 156, 157, 159, 161, 241
Unicode ASCII Unicode Variable ASCII Varia-

ble 234, 235
Unicode byte order marks 257, 258, 259
Unicode character 163, 268, 270, 289
Unicode string 288
Unicode UCS-2, 154, 257, 258
UnicodeDecode 154, 155, 156, 157, 159, 161,

163
UnicodeDecode Component Information File

164
Universal Network Device Interface (UNDI),

57, 177
Unload 166, 167, 169, 192, 230
Unloading UEFI Drivers 167
Unsigned integer 143, 153, 198, 205, 245,

248, 249
Updates 50, 104, 107, 115, 192, 194, 195
Usage 65, 67, 158, 159, 209, 210, 211
Usage Guidelines 90, 91
USB 36, 49, 52
USB device 181
Use of UEFI for Diagnostics 85, 86, 88, 90,

92, 94, 96
Use ShellFindNextFile 260
User datagram protocol. See UDP
User input 94, 114, 244
User interface firmware’s 223, 224
Users 1, 4, 5, 15, 43, 92, 177
UseScript 63, 64, 65, 66
Utilities 5, 17, 18, 62, 63, 100, 101
– diagnostic UEFI Shell-based 87
– executable 17

V
Valid file names 233
Valid values 117, 197, 229, 278, 280, 289
Value 111, 178, 179, 208, 225, 248, 284
– current 219, 226, 239, 284

– enumerated 278, 279, 280, 289
– following 224, 227
– hash 183
– initial 111
– integer 214
– invalid 253, 255, 272, 273, 284
– raw 243, 249
– resulting 115, 143
Value of ShellPromptResponseTypeYesNo

278, 279
Value parameters 248
Variable 135, 194, 195, 204, 226, 236, 237
– global 63, 128, 130, 131, 140, 155
– lasterror shell 235
– local 129, 130, 133, 135
– new 226
– shellsupport 16
Variable argument list 276, 278
Variable contents 204
Variable-name 226, 236
Var-name 204
Verbose 202, 209, 210, 230
Volatile 130, 226, 236, 284
Voltage Probe structure 90
Volume 253, 254, 263, 273, 274, 283, 287
Volume label 192, 230, 231
V/RO uefishellversion 237

W, X, Y
Wide-area networks (WANs), 58
Width 82, 288
Wildcards 199, 208, 215, 216, 217, 220, 224
– command support 217
Windows command prompt 107
Work 1, 24, 52, 53, 107, 179
World 107, 108, 119, 120
Wrappers 122, 124
WriteFile 159, 162, 240
Www.uefi.org 2, 4, 15, 85

Z
Zimmer Vincent 3

	Preface��������������
	Contents���������������
	Chapter 1. Introduction������������������������������
	Chapter 2. Under the UEFI Shell��������������������������������������
	Chapter 3. What Is the UEFI Shell?���
	Chapter 4. Why We Need an Execution Environment before the OS��
	Chapter 5. Manufacturing�������������������������������
	Chapter 6. Bare Metal Provisionig��
	Chapter 7. Configuration of Provisioned Material���
	Chapter 8. The Use of UEFI for Diagnostics���
	Chapter 9. UEFI Shell Scripting��������������������������������������
	Chapter 10. UEFI Shell Programming���
	Chapter 11. Managing UEFI Drivers Using the Shell��
	Appendix A. Security Considerations��
	Appendix B. Command Reference������������������������������������
	Appendix C. Programming Reference��
	Appendix D. UEFI Shell Library�������������������������������������
	Index������������

