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ABSTRACT 
Software systems evolve over time due to changes in 
requirements, optimization of code, fixes for security and 
reliability bugs etc. Code churn, which measures the changes 
made to a component over a period of time, quantifies the extent 
of this change.  We present a technique for early prediction of 
system defect density using a set of relative code churn measures 
that relate the amount of churn to other variables such as 
component size and the temporal extent of churn.   
Using statistical regression models, we show that while absolute 
measures of code churn are poor predictors of defect density, our 
set of relative measures of code churn is highly predictive of 
defect density. A case study performed on Windows Server 2003 
indicates the validity of the relative code churn measures as early 
indicators of system defect density. Furthermore, our code churn 
metric suite is able to discriminate between fault and not fault-
prone binaries with an accuracy of 89.0 percent.  

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement – Version control. D.2.8 [Software Engineering]: 
Metrics - Performance measures, Process metrics, Product 
metrics. 

General Terms 
Measurement, Design, Reliability. 

Keywords 
Relative code churn, defect density, fault-proneness, multiple 
regression, principal component analysis. 

1. INTRODUCTION 
A “reliability chasm” often separates the quality of a software 
product observed in its pre-release testing in a software 
development shop and its post-release use in the field.  That is, 
true field reliability, as measured by the number of failures found 

by customers over a period of time, cannot be measured before a 
product has been completed and delivered to a customer. Because 
true reliability information is available late in the process, 
corrective actions tend to be expensive [3]. Clearly, software 
organizations can benefit in many ways from an early warning 
system concerning potential post-release defects in their product 
to guide corrective actions to the quality of the software.  

We use code churn to predict the defect density in software 
systems. Code churn is a measure of the amount of code change 
taking place within a software unit over time.  It is easily extracted 
from a system’s change history, as recorded automatically by a 
version control system. Most version control systems use a file 
comparison utility (such as diff) to automatically estimate how 
many lines were added, deleted and changed by a programmer to 
create a new version of a file from an old version. These 
differences are the basis of churn measures. 

We create and validate a set of relative code churn measures as 
early indicators of system defect density. Relative churn measures 
are normalized values of the various measures obtained during the 
churn process. Some of the normalization parameters are total 
lines of code, file churn, file count etc.  Munson et al. [17] use a 
similar relative approach towards establishing a baseline while 
studying code churn. Studies have shown that absolute measures 
like LOC are poor predictors of pre- and post release faults [7] in 
industrial software systems. In general, process measures based on 
change history have been found be better indicators of fault rates 
than product metrics of code [9]. In an evolving system it is highly 
beneficial to use a relative approach to quantify the change in a 
system. As we show, these relative measures can be devised to 
cross check each other so that the metrics do not provide 
conflicting information. 

Our basic hypothesis is that code that changes many times pre-
release will likely have more post-release defects than code that 
changes less over the same period of time. More precisely, we 
address the hypotheses shown in Table 1. 

Our experiments on Windows Server 2003 (W2k3) support these 
four hypotheses with high statistical significance. We analyzed the 
code churn between the release of W2k3 and the release of the 
W2k3 Service Pack 1 (W2k3-SP1) to predict the defect density in 
W2k3-SP1. The relative code churn measures are statistically 
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better predictors of defect density than the absolute measures. 
They also they are indicative of increase in system defect density 
and can accurately predict the system defect density with a high 
degree of sensitivity. Our metric suite is able to discriminate 
between fault and not fault-prone binaries in W2k3-SP1 with an 
accuracy of 89.0 percent.  

Table 1. Research Hypotheses 

 Hypothesis 
H1 Increase in relative code churn measures is 

accompanied by an increase in system defect 
density 

H2 Using relative values of code churn predictors is 
better than using direct (absolute) values to explain 
the system defect density 

H3 Relative code churn measures can be used as 
efficient predictors of system defect density. 

H4 Relative code churn measures can be used to 
discriminate between fault and not fault-prone 
binaries.  

The organization of this paper is as follows. Section 2 describes 
the related work.  Section 3 explains data collection and section 4 
the relative code churn measures. Section 5 presents the case 
study and the observed results. Section 6 discusses our 
conclusions and future work.  

2. RELATED WORK 
Prior analyses on predicting defect density used code churn 
measures as part of a larger set of metrics. Code churn measures 
have not been studied in isolation as predictors of software defect 
density. The background work presented below is from studies 
that involved industrial software systems. The source code base of 
W2k3 is two orders of magnitude larger than the largest example 
considered below. 

Munson et al. [17] observe that as a system is developed, the 
relative complexity of each program module that has been altered 
(or churned) also will change. The rate of change in relative 
complexity serves as a good index of the rate of fault injection.  
They studied a 300 KLOC (thousand lines of code) embedded real 
time system with 3700 modules programmed in C. Code churn 
metrics were found to be among the most highly correlated with 
problem reports [17].  

Khoshgoftaar et al.[13] define debug churn as the number of lines 
of code added or changed for bug fixes. Their objective was to 
identify modules where debug code churn exceeds a threshold, in 
order to classify the modules as fault-prone. They studied two 
consecutive releases of a large legacy system for 
telecommunications. The system contained over 38,000 
procedures in 171 modules. Discriminant analysis identified fault-
prone modules based on 16 static software product metrics. Their 
model when used on the second release showed a type I and II 
misclassification rate of 21.7%, 19.1% respectively and an overall 
misclassification rate of 21.0%. 

Ohlsson et al. [19] identify fault-prone modules by analyzing 
legacy software through successive releases. They use a total of 
28 measures, twelve of which are based on size and change 
measures. These measures were used to identify 25 percent of the 
most fault-prone components successfully.  

Karunanithi [12] uses a neural network approach for software 
reliability growth modeling in the presence of continuous code 
churn, which he shows improves over the traditional time-domain 
based models. Similarly Khoshgoftaar et al. [15] use code churn 
as a measure of software quality in a program of 225,000 lines of 
assembly language. Using eight complexity measures, including 
code churn, they found neural networks and multiple regression to 
be an efficient predictor of software quality, as measured by gross 
change in the code. They suggest that using neural networks may 
not work in all environments and the results obtained are 
environment specific.  Neural networks can be used for improving 
software maintenance [15]. 

Ostrand et al. [20] use information of file status such as new, 
changed, unchanged files along with other explanatory variables 
such as lines of code, age, prior faults etc. as predictors in a 
negative binomial regression equation to predict the number of 
faults in a multiple release software system. The predictions made 
using binomial regression model were of a high accuracy for 
faults found in both early and later stages of development. [20] 

Closely related to our study is the work performed by Graves et al. 
[9] on predicting fault incidences using software change history. 
Several statistical models were built based on a weighted time 
damp model using the sum of contributions from all changes to a 
module in its history. The most successful model computes the 
fault potential by summing contributions from changes to the 
module, where large and/or recent changes contribute the most to 
fault potential [9]. This is similar to our approach of using relative 
measures to predict fault potential. 

Drawing general conclusions from empirical studies in software 
engineering is difficult because any process depends to a large 
degree on a potentially large number of relevant context variables.  
For this reason, we cannot assume a priori that the results of a 
study generalize beyond the specific environment in which it was 
conducted [2].  Researchers become more confident in a theory 
when similar findings emerge in different contexts [2].  Towards 
this end we intend that our case study contributes towards 
strengthening the existing empirical body of knowledge in this 
field [7, 9, 13, 15, 17, 19, 20].  

3. DATA COLLECTION 
The baseline used for measuring the code churn and other 
measures described below is Windows Server 2003 (W2k3). We 
measured churn between this baseline and Windows Server 2003 
Service Pack 1 (W2k3-SP1). We sometimes refer to W2k3-SP1 as 
the “new version” of the code.  Service packs are a means by 
which product updates are distributed1. Service packs contain 
updates for system reliability, program compatibility, security, etc. 
that are conveniently bundled for easy downloading. 

The size of the code base analyzed is 44.97 million LOC (44,970 
KLOC). This consisted of 2465 binaries which were compiled 
from 96,189 files. Some files contribute to more than one binary. 
As defects for W2k3-SP1 are reported at the binary level, we 
relate churn to defects at the level of binaries. 
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The absolute measures and methods of data collection are 
described below: 

• Total LOC is the number of lines of non-commented 
executable lines in the files comprising the new version 
of a binary. Internal Microsoft tools were used to 
compute this measure.  

• Churned LOC is the sum of the added and changed 
lines of code between a baseline version and a new 
version of the files comprising a binary.   

• Deleted LOC is the number of lines of code deleted 
between the baseline version and the new version of a 
binary. The churned LOC and the deleted LOC are 
computed by the version control systems using a file 
comparison utility like diff.  

• File count is the number of files compiled to create a 
binary. 

• Weeks of churn is the cumulative time that a file was 
opened for editing from the version control system.  

• Churn count is the number of changes made to the files 
comprising a binary between the two versions (W2k3 
and W2k3-SP1). 

• Files churned is the number of files within the binary 
that churned. 

4. RELATIVE CODE CHURN MEASURES  
In this section we describe our relative code churn measures. The 
churn measures are denoted by the elements M1-M8. The 
elements and their relationship to defect density are explained 
below (these relationships are verified in section 5.1): 

• M1: Churned LOC / Total LOC. We expect the larger 
the proportion of churned (added + changed) code to the 
LOC of the new binary, the larger the magnitude of the 
defect density for that binary will be. 

• M2: Deleted LOC / Total LOC. We expect the larger 
the proportion of deleted code to the LOC of the new 
binary, the larger the magnitude of the defect density for 
that binary will be.  

• M3: Files churned / File count. We expect the greater 
the proportion of files in a binary that get churned, the 
greater the probability of these files introducing defects. 
For e.g. suppose binaries A and B contain twenty files 
each. If binary A has five churned files and binary B has 
two churned files, we expect binary A to have a higher 
defect density. 

• M4: Churn count / Files churned. Suppose binaries A 
and B have twenty files each and also have five churned 
files each. If the five files in binary A are churned 
twenty times and the five files in binary B are churned 
ten times, then we expect binary A to have a higher 
defect density. M4 acts as a cross check on M3. 

• M5: Weeks of churn / File count. M5 is used to 
account for the temporal extent of churn. A higher value 
of M5 indicates that it took a longer time to fix a smaller 

number of files.  This may indicate that the binary 
contains complex files that may be hard to modify 
correctly.  Thus, we expect that an increase in M5 would 
be accompanied by an increase in the defect density of 
the related binary. 

• M6: Lines worked on / Weeks of churn: The measure 
“Lines worked on” is the sum of the churned LOC and 
the deleted LOC. M6 measures the extent of code churn 
over time in order to cross check on M5. Weeks of 
churn does not necessarily indicate the amount of churn. 
M6 reflects our expectation that the more lines are 
worked on, the longer the weeks of churn should be. A 
high value of M6 cross checks on M5 and should 
predict a higher defect density. 

• M7: Churned LOC / Deleted LOC. M7 is used in order 
to quantify new development. All churn is not due to 
bug fixes. In feature development the lines churned is 
much greater than the lines deleted, so a high value of 
M7 indicates new feature development. M7 acts as a 
cross check on M1 and M2, neither of which accurately 
predicts new feature development. 

• M8: Lines worked on / Churn count: We expect that 
the larger a change (lines worked on) relative to the 
number of changes (churn count), the greater the defect 
density will be. M8 acts as a cross check on M3 and 
M4, as well as M5 and M6. With respect to M3 and M4, 
M8 measures the amount of actual change that took 
place. M8 cross checks to account for the fact that files 
are not getting churned repeatedly for small fixes. M8 
also cross checks on M5 and M6 to account for the fact 
that the higher the value of M8 (more lines per churn), 
the higher is the time (M5) and lines worked on per 
week (M6). ). If this is not so then a large amount of 
churn might have been performed in a small amount of 
time, which can cause an increased defect density. 

Figure 1 illustrates the cross check relationships of these relative 
code churn measures. As discussed above M1, M2 and M7 cross 
check on each other and M8 cross checks on the set of M3, M4 
and M5, M6. All these measures triangulate on their respective 
dependent measures with the goal of providing the best possible 
estimate of defect density with a minimum inflation in the 
estimation.   

5. CASE STUDY  
We now describe the case study performed at Microsoft. Section 
5.1 presents the correlation analysis between the relative code 
churn measures and system defect density. Section 5.2 details the 
model building activities and Section 5.3 the predictive ability of 
the models. Section 5.4 discusses the discriminative power of the 
relative code churn measures and Section 5.5 the limitations of the 
study. 

 
 



 
Figure 1. Relative Churn Measure Cross Check Relationships 

 
Table 2. Cross Correlations. All correlations are significant at the 0.01 (99%) level (2-tailed).  

  M1 M2 M3 M4 M5 M6 M7 M8 
Defects 
/KLOC 

M1 ρρρρ 1.000 .834 .795 .413 .707 .651 .466 .588 .883 
M2 ρρρρ  1.000 .645 .553 .747 .446 .219 .492 .798 
M3 ρρρρ   1.000 .186 .749 .434 .445 .269 .868 
M4 ρρρρ    1.000 .531 .429 .210 .631 .288 
M5 ρρρρ     1.000 .263 .201 .390 .729 
M6 ρρρρ      1.000 .701 .843 .374 
M7 ρρρρ       1.000 .507 .288 
M8 ρρρρ        1.000 .262 

Defects/
KLOC 

ρρρρ         1.000 

As mentioned before, the system defect density for W2k3-
SP1 was collected at the level of binaries. That is, for each 
binary we have a count of the number of defects assigned to 
that binary.  

Throughout the rest of the paper we assume a statistical 
significance at 99% confidence (level of significance (�  = 
0.01)). 

5.1 Correlation Analysis 

Our goal is to verify that with an increase in the code churn 
measures (M1-M8) there is a statistically significant increase 
in the defects/KLOC. Table 2 shows the Spearman rank 
correlation (� ) among the defects/KLOC and the relative 
code churn measures. Spearman rank correlation is a 
commonly-used robust correlation technique [8] because it 
can be applied even when the association between elements 
is non-linear.  

Table 2 shows that there exists a statistically significant (at 
99% confidence) positive relationship between the measures 
and the defects/KLOC (shown in bold). Thus, with an 
increase in the relative churn measures there is a 

corresponding positive increase in the defects/KLOC. This is 
indicated by the statistically significant positive Spearman 
rank correlation coefficient . From the above observations we 
conclude that an increase in relative code churn measures is 
accompanied by an increase in system defect density (H1). 
In order to illustrate the cross checks better consider the 
measures M1, M2 and M7 in Figure 2 with their Spearman 
rank correlation coefficients from Table 2. 

 

Figure 2: Cross Correlation Relationships 
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The Spearman correlation coefficient of 0.834 between M1 
and M2 indicates that there is a very strong correlation 
between the two measures. But this might not be the case 
when there is a higher proportion of churned code compared 
to deleted code (as measured by M7 for new feature 
development). Since this cannot be measured by M1 or M2, 
M7 acts as a cross check on them. The correlation between 
M1 and M7 (0.466) indicates when there is a new feature 
addition there is a corresponding increase in the churned 
code. For M2 and M7 this correlation is not as strong (but is 
statistically significant) because there were relatively fewer 
new feature additions compared to other changes in the 
W2k3-SP1 source base.  

5.2 Model Fitting 

We now compare predictive models built using absolute 
measures against those built using the relative churn 
measures. For the absolute model, defects/KLOC is the 
dependent variable and the predictors are the absolute 
measures described in Section 3. For the relative model, 
defects/KLOC is the dependent variable and the predictors 
are the relative measures described in Section 4. 

R2 is a measure of variance in the dependent variable that is 
accounted for by the model built using the predictors [4]. R2 

is a measure of the fit for the given data set. (It cannot be 
interpreted as the quality of the dataset to make future 
predictions). The adjusted R2 measure also can be used to 
evaluate how well a model will fit a given data set [5]. 
Adjusted R2 explains for any bias in the R2 measure by taking 
into account the degrees of freedom of the predictor variables 
and the sample population. The adjusted R2 tends to remain 
constant as the R2 measure for large population samples. 

The multiple regression model fit for absolute measures 
using all the predictors has an R2 value of 0.052 (F=16.922, 
p<0.0005). (The F-ratio is used to test the hypothesis that all 
regression coefficients are zero). This is a poor fit of the data 
and irrespective of other transformations (like for e.g. log) 
we cannot get a marked improvement in R2. The adjusted R2 
value for the absolute measures is 0.49. Throughout the rest 
of this paper we present the adjusted R2 values in addition to 
the R2 measures in order to eliminate any bias in model 
building. But with respect to the large sample size (2465 
binaries) the adjusted R2 and R2 value show only minor 
variation, not sufficient enough to drop the R2 value and 
employ the adjusted R2 value.  

There are different ways in which regression models [16] can 
be built. Three common regression methods [16] are forward, 
backward and step-wise regression. In forward regression, 
one adds a single predictor at a time to the model based on 
the strength of its correlation with the dependent variable. 
The effect of adding each predictor is evaluated based on the 
results of an F-ratio test [16].  Variables that do not 
significantly add to the success of the model are excluded. In 
backward regression, a model is built using all the predictors. 
The weakest predictor variable is removed and the strength 
of the overall built model is assessed similar to the forward 
regression procedure. If this significantly weakens the model 
then the predictor is put back (and otherwise removed). Step-
wise regression [16] is the more robust technique of these 

methods. The initial model consists of the predictor having 
the single largest correlation with the dependent variable. 
Subsequently, new predictors are selected for addition into 
the model based on their partial correlation with the 
predictors already in the model. With each new set of 
predictors, the model is evaluated and predictors that do not 
significantly contribute towards statistical significance in 
terms of the F-ratio are removed so that, in the end, the best 
set of predictors explaining the maximum possible variance 
is left.  

A step-wise regression analysis using the absolute set of 
predictors does not lead to any significant change in the R2 

values (=0.051) (adjusted R2 = 0.050). Only the LOC and the 
number of times a file is churned are kept as predictors. This 
further confirms the fact that using the absolute measures is 
not an appropriate method for assessing the system defect 
density.  

Several empirical studies use Principal Component Analysis 
(PCA) [10] to build regression models [6]. In PCA a smaller 
number of uncorrelated linear combinations of metrics, 
which account for as much sample variance as possible, are 
selected for use in regression. PCA is not a possible solution 
when using absolute measures because the correlation matrix 
is not positive definite. We still use the two principal 
components generated to build a multiple regression 
equation. The multiple regression equation constructed has 
an even lower value of R2=0.026, (F=33.279, p<0.0005).  

Based on the three results discussed above (multiple 
regression using all the predictors, step-wise regression and 
PCA) we conclude that the absolute measures are not good 
predictors of system defect density.  

As outlined in Section 3 we calculate the relative code churn 
measures (M1-M8) and build regression models using all the 
measures, step-wise regression and PCA. Table 3 shows the 
R2 value of the regression equation built using all the 
measures. We also present the adjusted R2 value and the root 
MSE (Mean Squared Error).  

Table 3. Regression Fit Using All Measures 

Model R2 Adjusted R2 Root MSE 
All Measures .811 .811 1.301215 

Table 4 shows how the R2 value changes in step-wise 
regression for all the models built during that process. In the 
step-wise regression model the measure M7 is dropped. The 
best R2 value in Table 4 (without M7) is the same as that of 
Table 3 (.811) but there is a change in the third decimal place 
of the standard error of the estimate. M7 probably was 
dropped because there were relatively fewer new feature 
additions compared to other changes in the W2k3-SP1 source 
base. The adjusted R2 values are also shown but are not 
significantly different from the R2 values due to the large 
sample size used to build the models.  

 

 

 



 

Table 4. Step-wise Regression Models 

Model R-Square 

 
Adjusted 
R-Square Root MSE 

(a) .592 .592 1.908727 
(b) .685 .685 1.677762 
(c) .769 .769 1.437246 
(d) .802 .801 1.331717 
(e) .808 .807 1.312777 
(f) .810 .809 1.305817 
(g) .811 .811 1.300985 

a  Predictors: (Constant), M2 
b  Predictors: (Constant), M2, M3 
c  Predictors: (Constant), M2, M3, M8 
d  Predictors: (Constant), M2, M3, M8, M1 
e  Predictors: (Constant), M2, M3, M8, M1, M6 
f  Predictors: (Constant), M2, M3, M8, M1, M6, M5 
g  Predictors: (Constant), M2, M3, M8, M1, M6, M5, M4. 

The PCA of the eight relative code churn measures yields 
three principal components. PCA can account for the 

multicollinearity among the measures, which can lead to 
inflated variance in the estimation of the defect density.  

But for PCA to be applicable the KMO (Kaiser-Meyer-
Olkin) measure[11] of sampling adequacy should be greater 
than 0.6 [4]. The KMO measure of sampling adequacy is a 
test of the amount of variance within the data that can be 
explained by the measures. The KMO measure of the eight 
relative code churn measures is 0.594 which indicates that 
PCA might not be an appropriate method to apply.   

We still perform the analysis to investigate and present those 
results as well on a comparative basis. The results for all 
three models are summarized in Table 5.  

Table 5. Relative Measures Model Fits 

Model R2 Adjusted R2 F-Test sig. 
All measures 0.811 0.811 1318.44, 

(p<0.0005) 
Step-wise 
regression 

0.811 0.811 1507.31, 
(p<0.0005) 

PCA 0.749 0.748 2450.89, 
(p<0.0005) 

From the above results we can see that using relative values 
of code churn predictors is better than using absolute values 
to explain the system defect density (H2). 

 
Figure 3: Actual vs. Estimated System Defect Density



5.3 Defect Density Prediction 

We use the technique of data splitting [18] to measure the 
ability of the relative code churn measures to predict system 
defect density. The data splitting technique was employed to 
get an independent assessment of how well the defect density 
can be estimated from a population sample. We randomly 
select two thirds of the binaries (1645) to build the prediction 
model and use the remaining one third (820) to verify the 
prediction accuracy. We constructed models using all the 
measures, step-wise regression and PCA (for purpose of 
completeness). Table 6 shows the results for these models. 

Table 6. Regression Data Fit 

Model R2 Adjusted 
R2 

F-Test sig. 

All measures 0.821 0.820 938.304, 
(p<0.0005) 

Step-wise 
regression 

(M7 dropped) 

0.821 0.820 1072.975, 
(p<0.0005) 

PCA 0.762 0.761 1749.113, 
(p<0.0005) 

Using the fitted regression equation we estimate the system 
defect density for the remaining 820 binaries. Figure 3 shows 
the estimated and actual defect density using the regression 
equation constructed using all the measures (sorted by 
estimated defect density). The estimated defect density is 
shown by the thicker continuous line. From the graph we can 
see that the estimated defect density is similar to the actual 
defect density. The axes on the graphs are removed in order 
to protect proprietary data 

To quantify the sensitivity of prediction, we run a correlation 
analysis between the estimated and actual values. A high 
positive correlation coefficient indicates that with an increase 
in the actual defect density there is a corresponding positive 
increase in the estimated defect density. We perform Pearson 
and Spearman correlations to indicate their sensitivity. The 
Pearson correlation indicates a linear relationship. The 
Spearman correlation is a more robust correlation technique.  

Table 7 shows that the correlations are all positive and 
statistically significant. The magnitude of the correlations 
indicates the sensitivity of the predictions (the stronger the 
correlations the more sensitive are the predictions). The 
models built using all the measures and the step-wise method 
have the same sensitivity and are better than the model built 
using PCA. 

Table 7. Correlation Results 

Model Pearson (sig.) Spearman (sig.) 
All measures 0.889 (p<0.0005) 0.929 (p<0.0005) 
Step-wise 
regression  

0.889 (p<0.0005) 0.929 (p<0.0005) 

PCA 0.849 (p<0.0005) 0.826 (p<0.0005) 

Analyses that are based on a single dataset that use the same 
data to both estimate the model and to assess its performance 
can lead to unreasonably negative biased estimates of 
sampling variability. In order to address this we repeat the 

random sampling with 3 different random samples to verify 
if the above results are repeatable. For each sample the model 
is fit with 1645 binaries to build the model. Table 8 shows 
the fit of the various models built for each sample. 

Table 8. Random Splits Data Fit 

Model R2 Adjusted 
R2 

F-Test (Sig.) 

Random 1: All 0.836 0.835 1045.07,  
(p<0.0005) 

Random 1: 
Stepwise (drop 

none) 

0.836 0.835 1045.07, 
(p<0.0005) 

Random 1: PCA 0.757 0.756 1701.98, 
(p<0.0005) 

Random 2: All 0.822 0.821 941.86,  
(p<0.0005) 

Random 2: 
Stepwise (drop 

M4) 

0.821 0.820 1074.05, 
(p<0.0005) 

Random 2: PCA 0.765 0.764 1776.87, 
(p<0.0005) 

Random 3: All 0.799 0.798 813.12, 
(p<0.0005) 

Random 3: 
Stepwise (drop 

M7) 

0.799 0.798 927.54, 
(p<0.0005) 

Random 3: PCA 0.737 0.736 1529.25, 
(p<0.0005) 

 
Using each of the above predictive models we calculate the 
estimated defect density for the remaining 820 binaries. 
Table 9 shows the correlation between the estimated and the 
actual defect density. 

Table 9. Correlation Between Actual and Estimated 
Defects/KLOC 

Model Pearson 
Correlation (sig.) 

Spearman 
Correlation (sig.) 

Random 1: 
All 

0.873 (p<0.0005) 0.931 (p<0.0005) 

Random 1: 
Stepwise 

0.873 (p<0.0005) 0.931 (p<0.0005) 

Random 1: 
PCA 

0.858 (p<0.0005) 0.836 (p<0.0005) 

Random 2: 
All 

0.878 (p<0.0005) 0.917 (p<0.0005) 

Random 2: 
Stepwise 

0.876 (p<0.0005) 0.906 (p<0.0005) 

Random 2: 
PCA 

0.847 (p<0.0005) 0.825 (p<0.0005) 

Random 3: 
All 

0.899 (p<0.0005) 0.892 (p<0.0005) 

Random 3: 
Stepwise 

0.901 (p<0.0005) 0.893 (p<0.0005) 

Random 3: 
PCA 

0.880 (p<0.0005) 0.818 (p<0.0005) 

 
Based on the consistent positive and statistically significant 
correlations, indicating the sensitivity of predictions obtained 



in Table 9 we can say that relative code churn measures can 
be used as efficient predictors of system defect density (H3). 

Our results demonstrate it is effective to use all eight 
measures rather than dropping any of them from the 
predictive equation. Each of these measures cross check on 
each other and any abnormal behavior in one of the measures 
(for e.g. like a file getting churned too many times) would be 
immediately highlighted. 

By interchanging the measures in a model equation we can 
get estimated values for all the relative measures 
independently. For example, in order to determine the 
maximum allowable code churn with respect to the file size 
(i.e. M1), say for a particular software model we fix the 
maximum allowable system defect density. We then can 
build a regression model with M2-M8 and defect density as 
predictors and M1 as the dependent variable.  

5.4 Discriminant Analysis  

Discriminant analysis, is a statistical technique used to 
categorize programs into groups based on the metric values. 
It has been used as a tool for the detection of fault-prone 
programs [13, 14, 18]. The ANSI-IEEE Std. [1] defines a 
fault as an accidental condition that causes a functional unit 
to fail to perform its required function. We use discriminant 
analysis to identify binaries as fault-prone or not fault-prone.  
To classify if a binary is fault-prone or not we use the system 
defect density in a normal confidence interval calculation as 
shown in equation 1. 

LB = � x-z� /2*Standard deviation of defect density... (1)  

     n     

where  

• LB is the lower bound on system defect density;  

• � x is the mean of defect density;  

• Z � /2 is the upper � /2 quantile of the standard normal 
distribution;  

• n is the number of observations.  

We conservatively classify all binaries that have a defect 
density less than LB as not fault-prone and the remaining as 
fault-prone. Table 10 shows the eigenvalue and overall 
classification ability of using the eight measures and the three 
principal components. The eigenvalue is a measure of the 
discriminative ability of the discriminant function. The 
higher the eigenvalue the better is the discriminative ability. 
For all measures, the function correctly classifies nearly nine 
out of every ten binaries. 

Table 10. Overall Discriminant Function Fit 

Model Eigenvalue Classification ability 
All Measures 1.025 2188/2465 (88.8%) 

PCA 0.624 2195/2465 (89.0%) 
 
As before, we split the data set into 1645 programs to build 
the discriminant function and the remaining 820 binaries to 
verify the classification ability of the discriminant function. 

We perform this analysis using all the measures and the 
principal components. The results of this fit and classification 
are shown below in table 11. 

Table 11. Discriminant Analysis 

 For Model Fit (for 1645 
binaries to build the model) 

For Test Data 
(820 binaries) 

Model Eigen 
value 

Classification 
ability 

Classification 
ability 

All 
Measures 

1.063 1464/1645 
(90.0%) 

735/820 
(89.6%) 

PCA 0.601 1461/1645 
(88.8%) 

739/820 
(90.1%) 

Table 11 shows that the relative code churn measures have 
effective discriminant ability (comparable to prior studies 
done on industrial software [13]). We conclude that relative 
code churn measures can be used to discriminate between 
fault and not fault-prone binaries (H4). 

5.5 Limitations of Study 
Internal validity. Internal validity issues arise when there 
are errors in measurement. This is negated to an extent by the 
fact that the entire data collection process is automated via 
the version control systems. However, the version control 
systems only records data upon developer check-out or 
check-in of files. If a developer made many overlapping edits 
to a file in a single check-out/check-in period then a certain 
amount of churn will not be visible.  A developer also might 
have a file checked out for a very long period of time during 
which few changes were made, inflating the “weeks of 
churn” measure.  

These concerns are alleviated to some extent by the cross 
check among the measures to identify abnormal values for 
any of the measures and the huge size and diversity of our 
dataset.  

In our case study we provide evidence for using all the 
relative churn measures rather than a subset of values or 
principal components. This is case study specific and should 
be refined based on further results. 

External validity. External validity issues may arise from 
the fact that all the data is from one software system (albeit 
one with many different components) and that the software is 
very large (some 44 million lines of code) as other software 
systems used for a similar analysis might not be of 
comparable size. 

6. CONCLUSIONS AND FUTURE 
WORK 
We have shown how relative code churn metrics are 
excellent predictors of defect density in a large industrial 
software system. Our case study provides strong support for 
the following conclusions:  

• Increase in relative code churn measures is 
accompanied by an increase in system defect 
density; 



• Using relative values of code churn predictors is 
better than using absolute values to explain the 
system defect density; 

• Relative code churn measures can be used as 
efficient predictors of system defect density; and 

• Relative code churn measures can be used to 
discriminate between fault and not fault-prone 
binaries. 

We plan to validate our approach on other products 
developed inside Microsoft like SQL Server and Office. We 
also plan to develop standards for all the measures to provide 
guidance to the developers on the maximum allowable 
change. We also plan to investigate how testing can more 
effectively be directed towards churned code. 
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