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ABSTRACT

Software systems evolve over time due to changes
requirements, optimization of code, fixes for ségurand
reliability bugs etc. Code churn, which measures ¢hanges
made to a component over a period of time, quastifhe extent
of this change. We present a technique for earbiption of
system defect density using a set of relative adden measures
that relate the amount of churn to other variabdesh as
component size and the temporal extent of churn.

Using statistical regression models, we show thatenabsolute
measures of code churn are poor predictors of tdfatsity, our
set of relative measures of code churn is highlgdjmtive of
defect density. A case study performed on Windoesvé& 2003
indicates the validity of the relative code churaasures as early
indicators of system defect density. Furthermorg, ade churn
metric suite is able to discriminate between fauitl not fault-
prone binaries with an accuracy of 89.0 percent.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement ¥Yersion contral D.2.8 [Software Engineering]:
Metrics - Performance measuresProcess metrics Product
metrics.

General Terms
Measurement, Design, Reliability.

Keywords
Relative code churn, defect density, fault-pronsnesultiple
regression, principal component analysis.

1. INTRODUCTION

A “reliability chasm” often separates the qualitf @ software
product observed in its pre-release testing in dwsoe
development shop and its post-release use in ¢ fiThat is,
true field reliability, as measured by the numbgfadures found
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by customers over a period of time, cannot be nredspbefore a

in Product has been completed and delivered to a mestdecause

true reliability information is available late irhe process,
corrective actions tend to be expensive [3]. Cleasoftware
organizations can benefit in many ways from anyearrning
system concerning potential post-release defecthain product
to guide corrective actions to the quality of toéwsare.

We usecode churnto predict the defect density in software
systems. Code churn is a measure of the amoundds change
taking place within a software unit over time.isleasily extracted
from a system’s change history, as recorded auioafigt by a
version control system. Most version control systame a file
comparison utility (such as diff) to automaticaltgtimate how
many lines were added, deleted and changed bygagmmer to
create a new version of a file from an old versidmese
differences are the basis of churn measures.

We create and validate a setrefative code churn measures as
early indicators of system defect density. Relativarn measures
are normalized values of the various measuresradaiuring the
churn process. Some of the normalization parametegstotal
lines of code, file churn, file count etc. Munseinal. [17] use a
similar relative approach towards establishing aebae while
studying code churn. Studies have shown that atesohg@asures
like LOC are poor predictors of pre- and post retefaults [7] in
industrial software systems. In general, procesasomes based on
change history have been found be better indicatbfault rates
than product metrics of code [9]. In an evolvingteyn it is highly
beneficial to use a relative approach to quantify thange in a
system. As we show, these relative measures caetieed to
cross check each other so that the metrics do movide
conflicting information.

Our basic hypothesis is that code that changes rtiaves pre-
release will likely have more post-release deféiets code that
changes less over the same period of time. Moreigely, we
address the hypotheses shown in Table 1.

Our experiments on Windows Server 2003 (W2k3) stipihese
four hypotheses with high statistical significandée analyzed the
code churn between the release of W2k3 and thaselef the
W2k3 Service Pack 1 (W2k3-SP1) to predict the dedeosity in
W2k3-SP1. The relative code churn measures aréstitally
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better predictors of defect density than the alisomeasures.
They also they are indicative of increase in systiefiect density
and can accurately predict the system defect demsih a high
degree of sensitivity. Our metric suite is able discriminate
between fault and not fault-prone binaries in W88t with an
accuracy of 89.0 percent.

Table 1. Research Hypotheses

Hypothesis
H, Increase in relative code churn measures| is
accompanied by an increase in system defect
density
H, Using relative values of code churn predictorg is

better than using direct (absolute) values to empla
the system defect density

The organization of this paper is as follows. Sect?2 describes
the related work. Section 3 explains data colbectnd section 4
the relative code churn measures. Section 5 predbet case
study and the observed results. Section 6 discussas
conclusions and future work.

2. RELATED WORK

Prior analyses on predicting defect density usedecchurn

measures as part of a larger set of metrics. Chdmameasures
have not been studied in isolation as predictorsoftivare defect
density. The background work presented below isnfsiudies

that involved industrial software systems. The sewode base of
W2k3 is two orders of magnitude larger than thgdat example
considered below.

Munson et al. [17] observe that as a system is Idped, the
relative complexity of each program module that besn altered
(or churned) also will change. The rate of changerdlative

complexity serves as a good index of the rate ok fajection.

They studied a 300 KLOC (thousand lines of codd)esided real
time system with 3700 modules programmed in C. Cdu&n

metrics were found to be among the most highlyedated with
problem reports [17].

Khoshgoftaar et al.[13] define debug churn as tmaler of lines
of code added or changed for bug fixes. Their dljeovas to
identify modules where debug code churn exceetiseshold, in
order to classify the modules as fault-prone. Thaydied two
consecutive releases of a large legacy system

telecommunications. The system contained over
procedures in 171 modules. Discriminant analyseatified fault-
prone modules based on 16 static software prodetties. Their
model when used on the second release showed d type Il

misclassification rate of 21.7%, 19.1% respectiaig an overall
misclassification rate of 21.0%.

Ohlsson et al. [19] identify fault-prone modules bgalyzing
legacy software through successive releases. Theyauotal of
28 measures, twelve of which are based on size cluashge
measures. These measures were used to identifgr2ér of the
most fault-prone components successfully.

Hs Relative code churn measures can be used as
efficient predictors of system defect density.

Ha Relative code churn measures can be used to
discriminate between fault and not fault-prone
binaries.

Karunanithi [12] uses a neural network approach doftware
reliability growth modeling in the presence of daobus code
churn, which he shows improves over the traditidimé-domain
based models. Similarly Khoshgoftaar et al. [158 aede churn
as a measure of software quality in a program &{@D lines of
assembly language. Using eight complexity measunesyding
code churn, they found neural networks and multiptgession to
be an efficient predictor of software quality, asasured by gross
change in the code. They suggest that using neetalorks may
not work in all environments and the results ol#dinare
environment specific. Neural networks can be dsedmproving
software maintenance [15].

Ostrand et al. [20] use information of file statsisch as new,
changed, unchanged files along with other explayatariables
such as lines of code, age, prior faults etc. a&sliptors in a
negative binomial regression equation to prediet mumber of
faults in a multiple release software system. Tiegligtions made
using binomial regression model were of a high emxy for
faults found in both early and later stages of tigument. [20]

Closely related to our study is the work perforrbgdsraves et al.
[9] on predicting fault incidences using softwateaege history.
Several statistical models were built based on mhted time
damp model using the sum of contributions fromchknges to a
module in its history. The most successful modehpates the
fault potential by summing contributions from chaagto the
module, where large and/or recent changes congritig most to
fault potential [9]. This is similar to our apprdecf using relative
measures to predict fault potential.

Drawing general conclusions from empirical studiesoftware
engineering is difficult because any process depdnda large
degree on a potentially large number of relevantext variables.
For this reason, we cannot assume a priori thatebelts of a
study generalize beyond the specific environmenthich it was
conducted [2]. Researchers become more configeat theory
when similar findings emerge in different contejak Towards
this end we intend that our case study contributesards
strengthening the existing empirical body of knalge in this
field [7, 9, 13, 15, 17, 19, 20].

3. DATA COLLECTION

The baseline used for measuring the code churn ahdr
measures described below is Windows Server 200k3)V2Ve
measured churn between this baseline and Window®IS2003
Service Pack 1 (W2k3-SP1). We sometimes refer t&3A&P1 as
the “new version” of the code. Service packs ammeans by
which product updates are distributedervice packs contain

for updates for system reliability, program compatipilsecurity, etc.
88,00 that are conveniently bundled for easy downloading.

The size of the code base analyzed is 4/m8iion LOC (44,970
KLOC). This consisted of 2465 bhinaries which wemmpiled
from 96,189 files. Some files contribute to morarttone binary.
As defects for W2k3-SP1 are reported at the bidavel, we
relate churn to defects at the level of binaries.

! http://support.microsoft.com/



The absolute measures and methods of data coliedie
described below:

Total LOC is the number of lines of hon-commented
executable lines in the files comprising the newsizm

of a binary. Internal Microsoft tools were used to
compute this measure.

Churned LOC is the sum of the added and changed
lines of code between a baseline version and a new
version of the files comprising a binary.

Deleted LOC is the number of lines of code deleted
between the baseline version and the new versian of
binary. The churned LOC and the deleted LOC are
computed by the version control systems using e fil
comparison utility like diff.

File count is the number of files compiled to create a
binary.

Weeks of churn is the cumulative time that a file was
opened for editing from the version control system.

Churn count is the number of changes made to the files
comprising a binary between the two versions (W2k3
and W2k3-SP1).

number of files. This may indicate that the binary
contains complex files that may be hard to modify
correctly. Thus, we expect that an increase inWdld

be accompanied by an increase in the defect deofity
the related binary.

M®6: Lines worked on / Weeks of churn: The measure
“Lines worked on” is the sum of the churned LOC and
the deleted LOC. M6 measures the extent of codenchu
over time in order to cross check on M5. Weeks of
churn does not necessarily indicate the amounhwoifrc

M6 reflects our expectation that the more lines are
worked on, the longer the weeks of churn shouldfbe.
high value of M6 cross checks on M5 and should
predict a higher defect density.

M7: Churned LOC / Deleted LOC. M7 is used in order

to quantify new development. All churn is not dwe t
bug fixes. In feature development the lines churised
much greater than the lines deleted, so a highevafu
M7 indicates new feature development. M7 acts as a
cross check on M1 and M2, neither of which acclyate
predicts new feature development.

M8: Lines worked on / Churn count: We expect that
the larger a change (lines worked on) relative e t

number of changes (churn count), the greater tfecte
density will be. M8 acts as a cross check on M3 and
M4, as well as M5 and M6. With respect to M3 and, M4
M8 measures the amount of actual change that took
place. M8 cross checks to account for the fact fitest

are not getting churned repeatedly for small fiXds.
also cross checks on M5 and M6 to account for glge f
that the higher the value of M8 (more lines perraju
the higher is the time (M5) and lines worked on per
week (M6). ). If this is not so then a large amoaht
churn might have been performed in a small amoéint o
time, which can cause an increased defect density.

e Files churned is the number of files within the binary
that churned.

4. RELATIVE CODE CHURN MEASURES

In this section we describe our relative code chueasures. The
churn measures are denoted by the elements M1-M& T
elements and their relationship to defect density explained
below (these relationships are verified in secfdk):

¢ M1 Churned LOC / Total LOC. We expect the larger
the proportion of churned (added + changed) codleeo
LOC of the new binary, the larger the magnitudehef
defect density for that binary will be. Figure 1 illustrates the cross check relationsloipthese relative
code churn measures. As discussed above M1, MMandross
* M2 Deleted LOC / Total LOC. We expect the larger  check on each other and M8 cross checks on thef 948, M4
the proportion of deleted code to the LOC of thevne and M5, M6. All these measures triangulate on thesipective
binary, the larger the magnitude of the defect ifier dependent measures with the goal of providing the possible
that binary will be. estimate of defect density with a minimum inflation the
estimation.

5. CASE STUDY

We now describe the case study performed at MiéroSection
5.1 presents the correlation analysis between ¢fetive code
churn measures and system defect density. Sectodefails the
model building activities and Section 5.3 the pcade ability of
the models. Section 5.4 discusses the discrimiagtower of the
relative code churn measures and Section 5.5rfimtions of the
study.

e Ma3: Files churned / File count. We expect the greater
the proportion of files in a binary that get chuinéhe
greater the probability of these files introductigfects.
For e.g. suppose binaries A and B contain twenég fi
each. If binary A has five churned files and binBrizas
two churned files, we expect binary A to have ahbig
defect density.

¢ M4 Churn count / Files churned. Suppose binaries A
and B have twenty files each and also have fiverea
files each. If the five files in binary A are cherh
twenty times and the five files in binary B are oied
ten times, then we expect binary A to have a higher
defect density. M4 acts as a cross check on M3.

e M5 Weeks of churn / File count. M5 is used to
account for the temporal extent of churn. A highalue
of M5 indicates that it took a longer time to fixmaller



<4—p Cross check

M1: Churned LOC / Total LOC
M2: Deleted LOC / Total LOC
/ M3: Files churned / File count
M4: Churn count / Files churned
1\ \ M5: Weeks of churn/ File count
M®6: Lines worked on / Weeks of churn|
@ @ M7: Churned LOC / Deleted LOC

M8: Linesworked on / Churn cou

Figure 1. Relative Churn Measur e Cross Check Relationships

Table 2. Cross Correlations. All correlations are significant at the 0.01 (99R#)el (2-tailed).

Defects
M1 M2 M3 M4 M5 M6 M7 M8 /KLOC
M1 p 1000 .834 795 413 707 .651 466 .588 .883
M2 P 1.000 645 553 747 446 219 492 798
M3 P 1.000 .186 749 434 445 269 868
M4 p 1.000 531 429 210 631 .288
M5 o] 1.000 .263 .201 .390 .729
M6 p 1.000 701 .843 374
M7 p 1.000 507 .288
M8 o] 1.000 .262
Defects/ p
KLOC 1.000
As mentioned before, the system defect densityWf@k3- corresponding positive increase in the defects/KLDIs is
SP1 was collected at the level of binaries. Thafas each indicated by the statistically significant positi&earman
binary we have a count of the number of defectigaed to rank correlation coefficient . From the above obaBons we
that binary. conclude thaan increase in relative code churn measures is

accompanied by an increase in system defect dghkity

In order to illustrate the cross checks better ictmmsthe
measures M1, M2 and M7 in Figure 2 with their Spear
rank correlation coefficients from Table 2.

Throughout the rest of the paper we assume a tatatis
significance at 99% confidence (level of significang =
0.01)).

5.1 Correlation Analysis
Our goal is to verify that with an increase in ttedle churn 0.466 @

measures (M1-M8) there is a statistically significencrease

in the defects/KLOC. Table 2 shows the Spearmark ran
correlation ) among the defects/KLOC and the relative 0.834
code churn measures. Spearman rank correlation is a '
commonly-used robust correlation technique [8] beeait \

can be applied even when the association betwesmneeks 0.219

is non-linear.

Table 2 shows that there exists a statisticallyiigant (at

99% confidence) positive relationship between tfeasares Figure 2: Cross Correlation Relationships
and the defects/KLOC (shown in bold). Thus, with an

increase in the relative churn measures there is a



The Spearman correlation coefficient of 0.834 betw#&1
and M2 indicates that there is a very strong catiah
between the two measures. But this might not bectse
when there is a higher proportion of churned caglepared

methods. The initial model consists of the predidtaving
the single largest correlation with the dependemtiable.
Subsequently, new predictors are selected for iaddihto
the model based on their partial correlation withe t

to deleted code (as measured by M7 for new feature predictors already in the model. With each new skt

development). Since this cannot be measured by IMNIZy

M7 acts as a cross check on them. The correlatiwezn
M1 and M7 (0.466) indicates when there is a newiufea
addition there is a corresponding increase in therred
code. For M2 and M7 this correlation is not asrajr¢but is
statistically significant) because there were retdy fewer

new feature additions compared to other changeshén
W2k3-SP1 source base.

5.2 Modd Fitting

We now compare predictive models built using alisolu

measures against those built using the relativernchu

measures. For the absolute model, defects/KLOChe t
dependent variable and the predictors are the uatesol
measures described in Section 3. For the relatiogleim
defects/KLOC is the dependent variable and the igiad
are the relative measures described in Section 4.

R?is a measure of variance in the dependent vartahleis
accounted for by the model built using the predic{d]. R
is a measure of the fit for the given data setcéinot be
interpreted as the quality of the dataset to makieré

predictions). The adjusted?Rneasure also can be used to

evaluate how well a model will fit a given data $Bj.
Adjusted R explains for any bias in the’Rneasure by taking
into account the degrees of freedom of the predicdables
and the sample population. The adjustéddrds to remain
constant as the®Rneasure for large population samples.

The multiple regression model fit for absolute meas
using all the predictors has aR Walue of 0.052 (F=16.922,
p<0.0005). (The F-ratio is used to test the hypsithehat all
regression coefficients are zero). This is a pdmffthe data
and irrespective of other transformations (like ég. log)
we cannot get a marked improvement fn Fhe adjusted R
value for the absolute measures is 0.49. Througtheutest
of this paper we present the adjustédvRues in addition to

the R measures in order to eliminate any bias in model

building. But with respect to the large sample (2465
binaries) the adjusted 2Rand R value show only minor
variation, not sufficient enough to drop thé W®lue and
employ the adjustel?value.

There are different ways in which regression mofl#$ can
be built. Three common regression methods [16Taxeard,
backward and step-wise regression. In forward ssjpe,
one adds a single predictor at a time to the mbeséd on
the strength of its correlation with the dependeatiable.
The effect of adding each predictor is evaluateskaon the
results of an F-ratio test [16]. Variables that dot
significantly add to the success of the model amueled. In
backward regression, a model is built using allgheglictors.
The weakest predictor variable is removed and trength
of the overall built model is assessed similartte forward
regression procedure. If this significantly weak#res model
then the predictor is put back (and otherwise reedpvStep-
wise regression [16] is the more robust technigii¢hese

predictors, the model is evaluated and predictoas do not
significantly contribute towards statistical sido#ince in
terms of the F-ratio are removed so that, in the éme best
set of predictors explaining the maximum possitdeiance
is left.

A step-wise regression analysis using the absddeteof
predictors does not lead to any significant chaingthe R
values (=0.051) (adjustec?R 0.050). Only the LOC and the
number of times a file is churned are kept as pted§. This
further confirms the fact that using the absolutasures is
not an appropriate method for assessing the syd&fect
density.

Several empirical studies use Principal Componerlysis

(PCA) [10] to build regression models [6]. In PCAmaller

number of uncorrelated linear combinations of raestri
which account for as much sample variance as pessite
selected for use in regression. PCA is not a plessitiution

when using absolute measures because the cometatitrix

is not positive definite. We still use the two mipal

components generated to build a multiple regression
equation. The multiple regression equation contdtidas
an even lower value 0f’R0.026, (F=33.279, p<0.0005).

Based on the three results discussed above (neultipl
regression using all the predictors, step-wiseaggion and
PCA) we conclude that the absolute measures argouxt
predictors of system defect density.

As outlined in Section 3 we calculate the relateele churn
measures (M1-M8) and build regression models uaihthe
measures, step-wise regression and PCA. Table \8sstie
R? value of the regression equation built using &l t
measures. We also present the adjusfedaRie and the root
MSE (Mean Squared Error).

Table 3. Regression Fit Using All M easures

Model R?
All Measures| 811

Adjusted B
811

Root MSE
1.301215

Table 4 shows how the ?Rvalue changes in step-wise
regression for all the models built during thatqass. In the
step-wise regression model the measure M7 is dobpfiee
best B value in Table 4 (without M7) is the same as tifat
Table 3 (.811) but there is a change in the thécirdal place
of the standard error of the estimate. M7 probabhs
dropped because there were relatively fewer newurfea
additions compared to other changes in the W2k3s#Rice
base. The adjusted’Rvalues are also shown but are not
significantly different from the Rvalues due to the large
sample size used to build the models.



Table 4. Step-wise Regression M odels

Adjusted
Model | R-Square | R-Square| Root MSE
(@) 592 592 1.908727
(b) .685 .685 1.677762
(c) 769 .769 1.437246
(d) .802 .801 1.331717
(e) .808 .807 1.312777
® .810 .809 1.305817
(9) 811 811 1.300985

a Predictors: (Constant), M2

b Predictors: (Constant), M2, M3

¢ Predictors: (Constant), M2, M3, M8

d Predictors: (Constant), M2, M3, M8, M1

e Predictors: (Constant), M2, M3, M8, M1, M6
Predictors: (Constant), M2, M3, M8, M1, M6, M5

g Predictors: (Constant), M2, M3, M8, M1, M6, Md4.

—h

The PCA of the eight relative code churn measuiekly

multicollinearity among the measures, which candl¢a
inflated variance in the estimation of the defemgity.

But for PCA to be applicable the KMO (Kaiser-Meyer-
Olkin) measure[11] of sampling adequacy should teatgr
than 0.6 [4]. The KMO measure of sampling adequacy
test of the amount of variance within the data ttert be
explained by the measures. The KMO measure of itite e
relative code churn measures is 0.594 which indicahat
PCA might not be an appropriate method to apply.

We still perform the analysis to investigate andsent those
results as well on a comparative basis. The redattsall
three models are summarized in Table 5.

Table 5. Relative Measures Model Fits

M odel R? Adjusted R> | F-Test sig.
All measures 0.811 0.811 1318.44
(p<0.0005)
Step-wise 0.811 0.811 1507.31,
regression (p<0.0005)
PCA 0.749 0.748 2450.89,
(p<0.0005)

From the above results we can see tlsang relative values
of code churn predictors is better than using absolalues

three principal components. PCA can account for the to explain the system defect density)(H

defects/kloc

|
|
e
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Figure 3: Actual vs. Estimated System Defect Density



5.3 Defect Density Prediction

We use the technique of data splitting [18] to meaghe
ability of the relative code churn measures to joteslystem
defect density. The data splitting technique wapleyed to
get an independent assessment of how well the tdddesity
can be estimated from a population sample. We mahdo
select two thirds of the binaries (1645) to bulé prediction
model and use the remaining one third (820) tofywedhe
prediction accuracy. We constructed models usitghal
measures, step-wise regression and PCA (for purpése
completeness). Table 6 shows the results for timeskels.

Table 6. Regression Data Fit

M odel R? Adj uzsted F-Test sig.
R
All measures 0.821 0.820 938.304
(p<0.0005)
Step-wise 0.821 0.820 1072.975,
regression (p<0.0005)
(M7 dropped)
PCA 0.762 0.761 1749.113,
(p<0.0005)

Using the fitted regression equation we estimagesystem
defect density for the remaining 820 binaries. Fégi shows
the estimated and actual defect density using éfgesssion
equation constructed using all the measures (sobyed
estimated defect density). The estimated defecsitjers
shown by the thicker continuous line. From the brayg can
see that the estimated defect density is similah#oactual
defect density. The axes on the graphs are remiovetder
to protect proprietary data

To quantify the sensitivity of prediction, we rurcarrelation
analysis between the estimated and actual valuebigh
positive correlation coefficient indicates thattwitn increase
in the actual defect density there is a correspungositive
increase in the estimated defect density. We parféearson
and Spearman correlations to indicate their seityitiThe
Pearson correlation indicates a linear relationshipe
Spearman correlation is a more robust correlagohriique.

Table 7 shows that the correlations are all pasitand
statistically significant. The magnitude of the retations
indicates the sensitivity of the predictions (thmmsger the
correlations the more sensitive are the prediclioihe
models built using all the measures and the stap-wiethod
have the same sensitivity and are better than thaehbuilt

random sampling with 3 different random samplesenfy
if the above results are repeatable. For each satinglmodel
is fit with 1645 binaries to build the model. Tal8eshows
the fit of the various models built for each sample

Table 8. Random Splits Data Fit

M odel R? Adj uzsted F-Test (Sig.)
R
Random 1: All 0.836 0.835 1045.07,
(p<0.0005)
Random 1: 0.836 0.835 1045.07,
Stepwise (drop (p<0.0005)
none)
Random 1: PCA 0.757 0.756 1701.98,
(p<0.0005)
Random 2: All 0.822 0.821 941.86,
(p<0.0005)
Random 2: 0.821 0.820 1074.05,
Stepwise (drop (p<0.0005)
M4)
Random 2: PCA 0.765 0.764 1776.87,
(p<0.0005)
Random 3: All 0.799 0.798 813.12,
(p<0.0005)
Random 3: 0.799 0.798 927.54,
Stepwise (drop (p<0.0005)
M7)
Random 3: PCA 0.737 0.736 1529.25,
(p<0.0005)

Using each of the above predictive models we cateuthe
estimated defect density for the remaining 820 ridsa
Table 9 shows the correlation between the estimaedthe
actual defect density.

Table 9. Correlation Between Actual and Estimated

using PCA.

Table7. Correlation Results

5)

M odel Pearson (sig.) Spear man (sig.)
All measures| 0.889 (p<0.0005 0.929 (p<0.000
Step-wise 0.889 (p<0.0005) 0.929 (p<0.0005
regression
PCA 0.849 (p<0.0005) 0.826 (p<0.0005

)

Analyses that are based on a single dataset teahassame
data to both estimate the model and to assessriisrmance
can lead to unreasonably negative biased estimates
sampling variability. In order to address this vepeat the

DefectdKLOC
M odel Pear son Spearman
Correlation (sig.) Correlation (sig.)
Random 1: 0.873 (p<0.0005) 0.931 (p<0.0005)
All
Random 1: 0.873 (p<0.0005) 0.931 (p<0.0005)
Stepwise
Random 1: 0.858 (p<0.0005) 0.836 (p<0.0005)
PCA
Random 2: 0.878 (p<0.0005) 0.917 (p<0.0005)
All
Random 2: 0.876 (p<0.0005) 0.906 (p<0.0005)
Stepwise
Random 2: 0.847 (p<0.0005) 0.825 (p<0.0005)
PCA
Random 3: 0.899 (p<0.0005) 0.892 (p<0.0005)
All
Random 3: 0.901 (p<0.0005) 0.893 (p<0.0005)
Stepwise
Random 3: 0.880 (p<0.0005) 0.818 (p<0.0005)
PCA

Based on the consistent positive and statisticatipificant
correlations, indicating the sensitivity of predicts obtained




in Table 9 we can saypat relative code churn measures can We perform this analysis using all the measures ted
principal components. The results of this fit afabsification
are shown below in table 11.

be used as efficient predictors of system defatitye(H).

Our results demonstrate it is effective to use ailjht
measures rather than dropping any of them from the

Table 11. Discriminant Analysis

predictive equation. Each of these measures ctosskoon
each other and any abnormal behavior in one ofrthasures

(for e.g. like a file getting churned too many tsh&vould be
immediately highlighted.

By interchanging the measures in a model equatiercan
get estimated values for all the relative measures

independently. For example, in order to determihe t
maximum allowable code churn with respect to the dize

For Model Fit (for 1645 For Test Data

binariesto build themodd) | (820 hinaries)

M odel Eigen Classification Classification

value ability ability

All 1.063 1464/1645 735/820
Measures| (90.0%) (89.6%)
PCA 0.601 1461/1645 739/820
(88.8%) (90.1%)

(i.,e. M1), say for a particular software model vie the
maximum allowable system defect density. We then ca
build a regression model with M2-M8 and defect dgnas
predictors and M1 as the dependent variable.

5.4 Discriminant Analysis

Discriminant analysis, is a statistical techniqueedi to
categorize programs into groups based on the madties.

It has been used as a tool for the detection df-faone

programs [13, 14, 18]. The ANSI-IEEE Std. [1] defina
fault as an accidental condition that causes a fundtiomia

to fail to perform its required function. We usediminant
analysis to identify binaries as fault-prone or faatlt-prone.
To classify if a binary is fault-prone or not weeube system
defect density in a normal confidence interval gkition as
shown in equation 1.

LB = p,-z,»*Standard deviation of defect density(1)

Jn

where
« LB s the lower bound on system defect density;
e is the mean of defect density;

e Z,is the uppew/2 quantile of the standard normal
distribution;

¢ nisthe number of observations.

We conservatively classify all binaries that haveledect
density less than LB as not fault-prone and theaieimg as
fault-prone. Table 10 shows the eigenvalue and adiver
classification ability of using the eight measuaesl the three
principal components. The eigenvalue is a meastirthe
discriminative ability of the discriminant functionThe
higher the eigenvalue the better is the discriniimadbility.
For all measures, the function correctly classifiearly nine
out of every ten binaries.

Table 10. Overall Discriminant Function Fit

M odel Eigenvalue | Classification ability
All Measures 1.025 2188/2465 (88.8%
PCA 0.624 2195/2465 (89.0%

As before, we split the data set into 1645 progrsanisuild
the discriminant function and the remaining 820abies to
verify the classification ability of the discriminafunction.

Table 11 shows that the relative code churn meadage
effective discriminant ability (comparable to pristudies
done on industrial software [13]). We conclude tredative
code churn measures can be used to discriminateeeet
fault and not fault-prone binaries ¢+

5.5 Limitations of Study

Internal validity. Internal validity issues arise when there
are errors in measurement. This is negated to temtelxy the
fact that the entire data collection process iDmated via
the version control systems. However, the versiontrol
systems only records data upon developer checkeout
check-in of files. If a developer made many oveplag edits

to a file in a single check-out/check-in periodritee certain
amount of churn will not be visible. A developésamight
have a file checked out for a very long periodimiet during
which few changes were made, inflating the “weels o
churn” measure.

These concerns are alleviated to some extent bycribes
check among the measures to identify abnormal salae
any of the measures and the huge size and diverityr
dataset.

In our case study we provide evidence for using tladl
relative churn measures rather than a subset afesabr
principal components. This is case study specifitt should
be refined based on further results.

External validity. External validity issues may arise from
the fact that all the data is from one softwareaesys(albeit
one with many different components) and that tHfensoe is
very large (some 44 million lines of code) as otbeftware
systems used for a similar analysis might not be of
comparable size.

6. CONCLUSIONS AND FUTURE
WORK

We have shown how relative code churn metrics are
excellent predictors of defect density in a largduistrial
software system. Our case study provides strongastifor

the following conclusions:

¢ Increase in relative code churn measures is
accompanied by an increase in system defect
density;



. Using relative values of code churn predictors is [8]
better than using absolute values to explain the
system defect density;

« Relative code churn measures can be used as[9]
efficient predictors of system defect density; and

. Relative code churn measures can be used to
discriminate between fault and not fault-prone

binaries. [10]

We plan to validate our approach on other products [11]
developed inside Microsoft like SQL Server and &ffiwe
also plan to develop standards for all the meadorpsovide
guidance to the developers on the maximum allowable
change. We also plan to investigate how testing roane
effectively be directed towards churned code.
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